BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 27440382)

  • 21. Stereolithographic printing of ionically-crosslinked alginate hydrogels for degradable biomaterials and microfluidics.
    Valentin TM; Leggett SE; Chen PY; Sodhi JK; Stephens LH; McClintock HD; Sim JY; Wong IY
    Lab Chip; 2017 Oct; 17(20):3474-3488. PubMed ID: 28906525
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Alginate based hybrid copolymer hydrogels--influence of pore morphology on cell-material interaction.
    Gnanaprakasam Thankam F; Muthu J
    Carbohydr Polym; 2014 Nov; 112():235-44. PubMed ID: 25129740
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Flow of microgel capsules through topographically patterned microchannels.
    Fiddes LK; Young EW; Kumacheva E; Wheeler AR
    Lab Chip; 2007 Jul; 7(7):863-7. PubMed ID: 17594005
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Process engineering of high voltage alginate encapsulation of mesenchymal stem cells.
    Gryshkov O; Pogozhykh D; Zernetsch H; Hofmann N; Mueller T; Glasmacher B
    Mater Sci Eng C Mater Biol Appl; 2014 Mar; 36():77-83. PubMed ID: 24433889
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Polypyrrole/Alginate Hybrid Hydrogels: Electrically Conductive and Soft Biomaterials for Human Mesenchymal Stem Cell Culture and Potential Neural Tissue Engineering Applications.
    Yang S; Jang L; Kim S; Yang J; Yang K; Cho SW; Lee JY
    Macromol Biosci; 2016 Nov; 16(11):1653-1661. PubMed ID: 27455895
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Towards a fully-synthetic substitute of alginate: development of a new process using thermal gelation and chemical cross-linking.
    Cellesi F; Tirelli N; Hubbell JA
    Biomaterials; 2004 Sep; 25(21):5115-24. PubMed ID: 15109835
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Water-Hydrogel Binding Affinity Modulates Freeze-Drying-Induced Micropore Architecture and Skeletal Myotube Formation.
    Rich MH; Lee MK; Marshall N; Clay N; Chen J; Mahmassani Z; Boppart M; Kong H
    Biomacromolecules; 2015 Aug; 16(8):2255-64. PubMed ID: 26113238
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Supramolecular hydrogel capsules based on PEG: a step toward degradable biomaterials with rational design.
    Rossow T; Bayer S; Albrecht R; Tzschucke CC; Seiffert S
    Macromol Rapid Commun; 2013 Sep; 34(17):1401-7. PubMed ID: 23929582
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Controlled self-assembly of alginate microgels by rapidly binding molecule pairs.
    Hu Y; Mao AS; Desai RM; Wang H; Weitz DA; Mooney DJ
    Lab Chip; 2017 Jul; 17(14):2481-2490. PubMed ID: 28627581
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Alginate core-shell beads for simplified three-dimensional tumor spheroid culture and drug screening.
    Yu L; Ni C; Grist SM; Bayly C; Cheung KC
    Biomed Microdevices; 2015 Apr; 17(2):33. PubMed ID: 25681969
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Directed assembly of cell-laden microgels for building porous three-dimensional tissue constructs.
    Yanagawa F; Kaji H; Jang YH; Bae H; Yanan D; Fukuda J; Qi H; Khademhosseini A
    J Biomed Mater Res A; 2011 Apr; 97(1):93-102. PubMed ID: 21319297
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biomimicking Robust Hydrogel for the Mesenchymal Stem Cell Carrier.
    Oh B; Melchert RB; Lee CH
    Pharm Res; 2015 Oct; 32(10):3213-27. PubMed ID: 25911596
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microfluidic one-step fabrication of radiopaque alginate microgels with in situ synthesized barium sulfate nanoparticles.
    Wang Q; Zhang D; Xu H; Yang X; Shen AQ; Yang Y
    Lab Chip; 2012 Nov; 12(22):4781-6. PubMed ID: 22992786
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Maintaining dimensions and mechanical properties of ionically crosslinked alginate hydrogel scaffolds in vitro.
    Kuo CK; Ma PX
    J Biomed Mater Res A; 2008 Mar; 84(4):899-907. PubMed ID: 17647237
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Selective Adsorption of Ionic Species Using Macroporous Monodispersed Polyethylene Glycol Diacrylate/Acrylic Acid Microgels with Tunable Negative Charge.
    Chen M; Kumrić KR; Thacker C; Prodanović R; Bolognesi G; Vladisavljević GT
    Gels; 2023 Oct; 9(11):. PubMed ID: 37998939
    [TBL] [Abstract][Full Text] [Related]  

  • 36. PEGDA hydrogels as a replacement for animal tissues in mucoadhesion testing.
    Eshel-Green T; Eliyahu S; Avidan-Shlomovich S; Bianco-Peled H
    Int J Pharm; 2016 Jun; 506(1-2):25-34. PubMed ID: 27084292
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Versatile, cell and chip friendly method to gel alginate in microfluidic devices.
    Håti AG; Bassett DC; Ribe JM; Sikorski P; Weitz DA; Stokke BT
    Lab Chip; 2016 Oct; 16(19):3718-27. PubMed ID: 27546333
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Investigation of the role of alginate containing high guluronic acid on osteogenic differentiation capacity of human umbilical cord Wharton's jelly mesenchymal stem cells.
    Bijan Nejad D; Azandeh S; Habibi R; Mansouri E; Bayati V; Ahmadi Angali K
    J Microencapsul; 2017 Dec; 34(8):732-743. PubMed ID: 29053065
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Photo-activated ionic gelation of alginate hydrogel: real-time rheological monitoring of the two-step crosslinking mechanism.
    Higham AK; Bonino CA; Raghavan SR; Khan SA
    Soft Matter; 2014 Jul; 10(27):4990-5002. PubMed ID: 24894636
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Alginate/polyoxyethylene and alginate/gelatin hydrogels: preparation, characterization, and application in tissue engineering.
    Aroguz AZ; Baysal K; Adiguzel Z; Baysal BM
    Appl Biochem Biotechnol; 2014 May; 173(2):433-48. PubMed ID: 24728760
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.