These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 27440466)

  • 1. Stress Detection Using Wearable Physiological and Sociometric Sensors.
    Mozos OM; Sandulescu V; Andrews S; Ellis D; Bellotto N; Dobrescu R; Ferrandez JM
    Int J Neural Syst; 2017 Mar; 27(2):1650041. PubMed ID: 27440466
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of an Integrated System of Wearable Physiological Sensors for Stress Monitoring in Working Environments by Using Biological Markers.
    Betti S; Lova RM; Rovini E; Acerbi G; Santarelli L; Cabiati M; Del Ry S; Cavallo F
    IEEE Trans Biomed Eng; 2018 Aug; 65(8):1748-1758. PubMed ID: 29989933
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stress detection in daily life scenarios using smart phones and wearable sensors: A survey.
    Can YS; Arnrich B; Ersoy C
    J Biomed Inform; 2019 Apr; 92():103139. PubMed ID: 30825538
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Discriminating stress from cognitive load using a wearable EDA device.
    Setz C; Arnrich B; Schumm J; La Marca R; Tröster G; Ehlert U
    IEEE Trans Inf Technol Biomed; 2010 Mar; 14(2):410-7. PubMed ID: 19906598
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Supervised machine learning algorithms to diagnose stress for vehicle drivers based on physiological sensor signals.
    Barua S; Begum S; Ahmed MU
    Stud Health Technol Inform; 2015; 211():241-8. PubMed ID: 25980876
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development and evaluation of an ambulatory stress monitor based on wearable sensors.
    Choi J; Ahmed B; Gutierrez-Osuna R
    IEEE Trans Inf Technol Biomed; 2012 Mar; 16(2):279-86. PubMed ID: 21965215
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of Mental, Emotional and Physical Stress through Analysis of Physiological Signals Using Smartphones.
    Mohino-Herranz I; Gil-Pita R; Ferreira J; Rosa-Zurera M; Seoane F
    Sensors (Basel); 2015 Oct; 15(10):25607-27. PubMed ID: 26457710
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental manipulation of the Trier Social Stress Test-Modified (TSST-M) to vary arousal across development.
    Yim IS; Quas JA; Rush EB; Granger DA; Skoluda N
    Psychoneuroendocrinology; 2015 Jul; 57():61-71. PubMed ID: 25885544
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Towards mental stress detection using wearable physiological sensors.
    Wijsman J; Grundlehner B; Liu H; Hermens H; Penders J
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():1798-801. PubMed ID: 22254677
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toward continuous ambulatory monitoring using a wearable and wireless ECG- recording system: a study on the effects of signal quality on arrhythmia detection.
    Tanantong T; Nantajeewarawat E; Thiemjarus S
    Biomed Mater Eng; 2014; 24(1):391-404. PubMed ID: 24211921
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ambulatory measurement of three-dimensional foot displacement during treadmill walking using wearable wireless ultrasonic sensor network.
    Qi Y; Soh CB; Gunawan E; Low KS
    IEEE J Biomed Health Inform; 2015 Mar; 19(2):446-52. PubMed ID: 24759996
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Secure publish-subscribe protocols for heterogeneous medical wireless body area networks.
    Picazo-Sanchez P; Tapiador JE; Peris-Lopez P; Suarez-Tangil G
    Sensors (Basel); 2014 Nov; 14(12):22619-42. PubMed ID: 25460814
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Objective stress monitoring based on wearable sensors in everyday settings.
    Han HJ; Labbaf S; Borelli JL; Dutt N; Rahmani AM
    J Med Eng Technol; 2020 May; 44(4):177-189. PubMed ID: 32589065
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A system for automatic detection of momentary stress in naturalistic settings.
    Gaggioli A; Pioggia G; Tartarisco G; Baldus G; Ferro M; Cipresso P; Serino S; Popleteev A; Gabrielli S; Maimone R; Riva G
    Stud Health Technol Inform; 2012; 181():182-6. PubMed ID: 22954852
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wireless design of a multisensor system for physical activity monitoring.
    Mo L; Liu S; Gao RX; John D; Staudenmayer JW; Freedson PS
    IEEE Trans Biomed Eng; 2012 Nov; 59(11):3230-7. PubMed ID: 23086196
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative Assessment for Self-Tracking of Acute Stress Based on Triangulation Principle in a Wearable Sensor System.
    Wu W; Pirbhulal S; Zhang H; Mukhopadhyay SC
    IEEE J Biomed Health Inform; 2019 Mar; 23(2):703-713. PubMed ID: 29994054
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Signal Quality Assessment Model for Wearable EEG Sensor on Prediction of Mental Stress.
    Hu B; Peng H; Zhao Q; Hu B; Majoe D; Zheng F; Moore P
    IEEE Trans Nanobioscience; 2015 Jul; 14(5):553-61. PubMed ID: 25935041
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Flexible and Wearable Human Stress Monitoring Patch.
    Yoon S; Sim JK; Cho YH
    Sci Rep; 2016 Mar; 6():23468. PubMed ID: 27004608
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wearable sensor systems for infants.
    Zhu Z; Liu T; Li G; Li T; Inoue Y
    Sensors (Basel); 2015 Feb; 15(2):3721-49. PubMed ID: 25664432
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stress Detection Through Wrist-Based Electrodermal Activity Monitoring and Machine Learning.
    Zhu L; Spachos P; Ng PC; Yu Y; Wang Y; Plataniotis K; Hatzinakos D
    IEEE J Biomed Health Inform; 2023 May; 27(5):2155-2165. PubMed ID: 37022004
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.