These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 27440476)

  • 1. Multichannel detection of ionic currents through two nanopores fabricated on integrated Si3N4 membranes.
    Yanagi I; Akahori R; Aoki M; Harada K; Takeda K
    Lab Chip; 2016 Aug; 16(17):3340-50. PubMed ID: 27440476
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sub-10-nm-thick SiN nanopore membranes fabricated using the SiO
    Yanagi I; Takeda KI
    Nanotechnology; 2021 Jul; 32(41):. PubMed ID: 34214991
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication of 3-nm-thick Si3N4 membranes for solid-state nanopores using the poly-Si sacrificial layer process.
    Yanagi I; Ishida T; Fujisaki K; Takeda K
    Sci Rep; 2015 Oct; 5():14656. PubMed ID: 26424588
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of short single-strand DNA homopolymers with ultrathin Si3N4 nanopores.
    Ma J; Qiu Y; Yuan Z; Zhang Y; Sha J; Liu L; Sun L; Ni Z; Yi H; Li D; Chen Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):022719. PubMed ID: 26382444
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Silicon substrate effects on ionic current blockade in solid-state nanopores.
    Tsutsui M; Yokota K; Nakada T; Arima A; Tonomura W; Taniguchi M; Washio T; Kawai T
    Nanoscale; 2019 Mar; 11(10):4190-4197. PubMed ID: 30793719
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discrimination of three types of homopolymers in single-stranded DNA with solid-state nanopores through external control of the DNA motion.
    Akahori R; Yanagi I; Goto Y; Harada K; Yokoi T; Takeda KI
    Sci Rep; 2017 Aug; 7(1):9073. PubMed ID: 28831056
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Back-Side Polymer-Coated Solid-State Nanopore Sensors.
    Leong IW; Tsutsui M; Nakada T; Taniguchi M; Washio T; Kawai T
    ACS Omega; 2019 Jul; 4(7):12561-12566. PubMed ID: 31460376
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integration of solid-state nanopores in a 0.5 μm CMOS foundry process.
    Uddin A; Yemenicioglu S; Chen CH; Corigliano E; Milaninia K; Theogarajan L
    Nanotechnology; 2013 Apr; 24(15):155501. PubMed ID: 23519330
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DNA sequence-dependent ionic currents in ultra-small solid-state nanopores.
    Comer J; Aksimentiev A
    Nanoscale; 2016 May; 8(18):9600-13. PubMed ID: 27103233
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A low-noise solid-state nanopore platform based on a highly insulating substrate.
    Lee MH; Kumar A; Park KB; Cho SY; Kim HM; Lim MC; Kim YR; Kim KB
    Sci Rep; 2014 Dec; 4():7448. PubMed ID: 25502421
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differentiation of short, single-stranded DNA homopolymers in solid-state nanopores.
    Venta K; Shemer G; Puster M; Rodríguez-Manzo JA; Balan A; Rosenstein JK; Shepard K; Drndić M
    ACS Nano; 2013 May; 7(5):4629-36. PubMed ID: 23621759
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DNA Translocation in Nanometer Thick Silicon Nanopores.
    Rodríguez-Manzo JA; Puster M; Nicolaï A; Meunier V; Drndić M
    ACS Nano; 2015 Jun; 9(6):6555-64. PubMed ID: 26035079
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Precise electrochemical fabrication of sub-20 nm solid-state nanopores for single-molecule biosensing.
    Ayub M; Ivanov A; Hong J; Kuhn P; Instuli E; Edel JB; Albrecht T
    J Phys Condens Matter; 2010 Nov; 22(45):454128. PubMed ID: 21339614
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabricating nanopores with diameters of sub-1 nm to 3 nm using multilevel pulse-voltage injection.
    Yanagi I; Akahori R; Hatano T; Takeda K
    Sci Rep; 2014 May; 4():5000. PubMed ID: 24847795
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Challenges of Single-Molecule DNA Sequencing with Solid-State Nanopores.
    Goto Y; Akahori R; Yanagi I
    Adv Exp Med Biol; 2019; 1129():131-142. PubMed ID: 30968365
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Precise fabrication of a 5 nm graphene nanopore with a helium ion microscope for biomolecule detection.
    Deng Y; Huang Q; Zhao Y; Zhou D; Ying C; Wang D
    Nanotechnology; 2017 Jan; 28(4):045302. PubMed ID: 27981944
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection of a single enzyme molecule based on a solid-state nanopore sensor.
    Tan S; Gu D; Liu H; Liu Q
    Nanotechnology; 2016 Apr; 27(15):155502. PubMed ID: 26937593
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanopore arrays in a silicon membrane for parallel single-molecule detection: fabrication.
    Schmidt T; Zhang M; Sychugov I; Roxhed N; Linnros J
    Nanotechnology; 2015 Aug; 26(31):314001. PubMed ID: 26180043
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solid-state nanopores and nanopore arrays optimized for optical detection.
    Sawafta F; Clancy B; Carlsen AT; Huber M; Hall AR
    Nanoscale; 2014 Jun; 6(12):6991-6. PubMed ID: 24838772
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tunable Nanopore Arrays as the Basis for Ionic Circuits.
    Lucas RA; Siwy ZS
    ACS Appl Mater Interfaces; 2020 Dec; 12(50):56622-56631. PubMed ID: 33283510
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.