These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 27441284)

  • 21. Efficiency at maximum power of thermally coupled heat engines.
    Apertet Y; Ouerdane H; Goupil C; Lecoeur P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 1):041144. PubMed ID: 22680454
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Efficiency Bounds for Minimally Nonlinear Irreversible Heat Engines with Broken Time-Reversal Symmetry.
    Liu Q; Li W; Zhang M; He J; Wang J
    Entropy (Basel); 2019 Jul; 21(7):. PubMed ID: 33267431
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Optimal performance of periodically driven, stochastic heat engines under limited control.
    Bauer M; Brandner K; Seifert U
    Phys Rev E; 2016 Apr; 93():042112. PubMed ID: 27176259
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Performance Features of a Stationary Stochastic Novikov Engine.
    Schwalbe K; Hoffmann KH
    Entropy (Basel); 2018 Jan; 20(1):. PubMed ID: 33265139
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A quantum-dot heat engine operating close to the thermodynamic efficiency limits.
    Josefsson M; Svilans A; Burke AM; Hoffmann EA; Fahlvik S; Thelander C; Leijnse M; Linke H
    Nat Nanotechnol; 2018 Oct; 13(10):920-924. PubMed ID: 30013221
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Maximum efficiency of ideal heat engines based on a small system: correction to the Carnot efficiency at the nanoscale.
    Quan HT
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062134. PubMed ID: 25019751
    [TBL] [Abstract][Full Text] [Related]  

  • 27. True nature of the Curzon-Ahlborn efficiency.
    Apertet Y; Ouerdane H; Goupil C; Lecoeur P
    Phys Rev E; 2017 Aug; 96(2-1):022119. PubMed ID: 28950453
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Brownian heat engine with active reservoirs.
    Lee JS; Park JM; Park H
    Phys Rev E; 2020 Sep; 102(3-1):032116. PubMed ID: 33075980
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Efficiency and its bounds for thermal engines at maximum power using Newton's law of cooling.
    Yan H; Guo H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 1):011146. PubMed ID: 22400551
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Work extremum principle: structure and function of quantum heat engines.
    Allahverdyan AE; Johal RS; Mahler G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Apr; 77(4 Pt 1):041118. PubMed ID: 18517589
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dynamic robustness of endoreversible Carnot refrigerator working in the maximum performance per cycle time.
    Lü K; Nie W; He J
    Sci Rep; 2018 Aug; 8(1):12638. PubMed ID: 30139973
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Optimal Power and Efficiency of Multi-Stage Endoreversible Quantum Carnot Heat Engine with Harmonic Oscillators at the Classical Limit.
    Meng Z; Chen L; Wu F
    Entropy (Basel); 2020 Apr; 22(4):. PubMed ID: 33286231
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Irreversibilities and efficiency at maximum power of heat engines: the illustrative case of a thermoelectric generator.
    Apertet Y; Ouerdane H; Goupil C; Lecoeur P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 1):031116. PubMed ID: 22587047
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A quantum heat engine driven by atomic collisions.
    Bouton Q; Nettersheim J; Burgardt S; Adam D; Lutz E; Widera A
    Nat Commun; 2021 Apr; 12(1):2063. PubMed ID: 33824327
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhanced Efficiency at Maximum Power in a Fock-Darwin Model Quantum Dot Engine.
    Peña FJ; Myers NM; Órdenes D; Albarrán-Arriagada F; Vargas P
    Entropy (Basel); 2023 Mar; 25(3):. PubMed ID: 36981406
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Quantum engine efficiency bound beyond the second law of thermodynamics.
    Niedenzu W; Mukherjee V; Ghosh A; Kofman AG; Kurizki G
    Nat Commun; 2018 Jan; 9(1):165. PubMed ID: 29323109
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Efficiency at and near maximum power of low-dissipation heat engines.
    Holubec V; Ryabov A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Nov; 92(5):052125. PubMed ID: 26651665
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Efficiency at maximum power and efficiency fluctuations in a linear Brownian heat-engine model.
    Park JM; Chun HM; Noh JD
    Phys Rev E; 2016 Jul; 94(1-1):012127. PubMed ID: 27575096
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Maximum efficiency of low-dissipation heat pumps at given heating load.
    Ye Z; Holubec V
    Phys Rev E; 2022 Feb; 105(2-1):024139. PubMed ID: 35291093
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Efficiency at maximum power output of quantum heat engines under finite-time operation.
    Wang J; He J; Wu Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 1):031145. PubMed ID: 22587076
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.