BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 27441384)

  • 1. Conjugation and Evaluation of Triazole-Linked Single Guide RNA for CRISPR-Cas9 Gene Editing.
    He K; Chou ET; Begay S; Anderson EM; van Brabant Smith A
    Chembiochem; 2016 Oct; 17(19):1809-1812. PubMed ID: 27441384
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Minimal 2'-O-methyl phosphorothioate linkage modification pattern of synthetic guide RNAs for increased stability and efficient CRISPR-Cas9 gene editing avoiding cellular toxicity.
    Basila M; Kelley ML; Smith AVB
    PLoS One; 2017; 12(11):e0188593. PubMed ID: 29176845
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An artificial triazole backbone linkage provides a split-and-click strategy to bioactive chemically modified CRISPR sgRNA.
    Taemaitree L; Shivalingam A; El-Sagheer AH; Brown T
    Nat Commun; 2019 Apr; 10(1):1610. PubMed ID: 30962447
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimizing sgRNA length to improve target specificity and efficiency for the GGTA1 gene using the CRISPR/Cas9 gene editing system.
    Matson AW; Hosny N; Swanson ZA; Hering BJ; Burlak C
    PLoS One; 2019; 14(12):e0226107. PubMed ID: 31821359
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Versatility of chemically synthesized guide RNAs for CRISPR-Cas9 genome editing.
    Kelley ML; Strezoska Ž; He K; Vermeulen A; Smith Av
    J Biotechnol; 2016 Sep; 233():74-83. PubMed ID: 27374403
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pinpoint modification strategy for stabilization of single guide RNA.
    Takeuchi S; Yamamoto M; Matsumoto S; Kenjo E; Karashima M; Ikeda Y
    J Chromatogr B Analyt Technol Biomed Life Sci; 2022 Mar; 1192():123149. PubMed ID: 35139474
    [TBL] [Abstract][Full Text] [Related]  

  • 7. C2c1-sgRNA Complex Structure Reveals RNA-Guided DNA Cleavage Mechanism.
    Liu L; Chen P; Wang M; Li X; Wang J; Yin M; Wang Y
    Mol Cell; 2017 Jan; 65(2):310-322. PubMed ID: 27989439
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tetrazine-Ligated CRISPR sgRNAs for Efficient Genome Editing.
    Chen Z; Devi G; Arif A; Zamore PD; Sontheimer EJ; Watts JK
    ACS Chem Biol; 2022 May; 17(5):1045-1050. PubMed ID: 35446558
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction and Validation of Native and Engineered Cas9 Guide Sequences.
    Briner AE; Henriksen ED; Barrangou R
    Cold Spring Harb Protoc; 2016 Jul; 2016(7):. PubMed ID: 27371591
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cell-Penetrating Peptide-Mediated Delivery of Cas9 Protein and Guide RNA for Genome Editing.
    Suresh B; Ramakrishna S; Kim H
    Methods Mol Biol; 2017; 1507():81-94. PubMed ID: 27832534
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pre-organized Guide RNA in the Cas9 Complex Is Ready for the Selection of Target Double-Stranded DNA.
    Kamiya Y; Asanuma H
    Chembiochem; 2015 Nov; 16(16):2273-5. PubMed ID: 26300258
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CRISPR-Click Enables Dual-Gene Editing with Modular Synthetic sgRNAs.
    Park H; Osman EA; Cromwell CR; St Laurent CD; Liu Y; Kitova EN; Klassen JS; Hubbard BP; Macauley MS; Gibbs JM
    Bioconjug Chem; 2022 May; 33(5):858-868. PubMed ID: 35436106
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimization Strategies for the CRISPR-Cas9 Genome-Editing System.
    Vejnar CE; Moreno-Mateos MA; Cifuentes D; Bazzini AA; Giraldez AJ
    Cold Spring Harb Protoc; 2016 Oct; 2016(10):. PubMed ID: 27698246
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome Editing with CRISPR-Cas9: Can It Get Any Better?
    Haeussler M; Concordet JP
    J Genet Genomics; 2016 May; 43(5):239-50. PubMed ID: 27210042
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Guide RNAs: A Glimpse at the Sequences that Drive CRISPR-Cas Systems.
    Briner AE; Barrangou R
    Cold Spring Harb Protoc; 2016 Jul; 2016(7):. PubMed ID: 27371605
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CRISPR-Cas9 Structures and Mechanisms.
    Jiang F; Doudna JA
    Annu Rev Biophys; 2017 May; 46():505-529. PubMed ID: 28375731
    [TBL] [Abstract][Full Text] [Related]  

  • 17. sgRNA Sequence Motifs Blocking Efficient CRISPR/Cas9-Mediated Gene Editing.
    Graf R; Li X; Chu VT; Rajewsky K
    Cell Rep; 2019 Jan; 26(5):1098-1103.e3. PubMed ID: 30699341
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High content analysis platform for optimization of lipid mediated CRISPR-Cas9 delivery strategies in human cells.
    Steyer B; Carlson-Stevermer J; Angenent-Mari N; Khalil A; Harkness T; Saha K
    Acta Biomater; 2016 Apr; 34():143-158. PubMed ID: 26747759
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simplified CRISPR tools for efficient genome editing and streamlined protocols for their delivery into mammalian cells and mouse zygotes.
    Jacobi AM; Rettig GR; Turk R; Collingwood MA; Zeiner SA; Quadros RM; Harms DW; Bonthuis PJ; Gregg C; Ohtsuka M; Gurumurthy CB; Behlke MA
    Methods; 2017 May; 121-122():16-28. PubMed ID: 28351759
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient ssODN-Mediated Targeting by Avoiding Cellular Inhibitory RNAs through Precomplexed CRISPR-Cas9/sgRNA Ribonucleoprotein.
    Kagita A; Lung MSY; Xu H; Kita Y; Sasakawa N; Iguchi T; Ono M; Wang XH; Gee P; Hotta A
    Stem Cell Reports; 2021 Apr; 16(4):985-996. PubMed ID: 33711268
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.