These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

364 related articles for article (PubMed ID: 27441584)

  • 1. Combining Human Computing and Machine Learning to Make Sense of Big (Aerial) Data for Disaster Response.
    Ofli F; Meier P; Imran M; Castillo C; Tuia D; Rey N; Briant J; Millet P; Reinhard F; Parkan M; Joost S
    Big Data; 2016 Mar; 4(1):47-59. PubMed ID: 27441584
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cost benefit analysis of survey methods for assessing intertidal sediment disturbance: A bait collection case study.
    White SM; Schaefer M; Barfield P; Cantrell R; Watson GJ
    J Environ Manage; 2022 Mar; 306():114386. PubMed ID: 35030426
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of unmanned aerial vehicles for efficient beach litter monitoring.
    Martin C; Parkes S; Zhang Q; Zhang X; McCabe MF; Duarte CM
    Mar Pollut Bull; 2018 Jun; 131(Pt A):662-673. PubMed ID: 29886994
    [TBL] [Abstract][Full Text] [Related]  

  • 4. E2mC: Improving Emergency Management Service Practice through Social Media and Crowdsourcing Analysis in Near Real Time.
    Havas C; Resch B; Francalanci C; Pernici B; Scalia G; Fernandez-Marquez JL; Van Achte T; Zeug G; Mondardini MRR; Grandoni D; Kirsch B; Kalas M; Lorini V; Rüping S
    Sensors (Basel); 2017 Nov; 17(12):. PubMed ID: 29186080
    [TBL] [Abstract][Full Text] [Related]  

  • 5. UAVs, Hyperspectral Remote Sensing, and Machine Learning Revolutionizing Reef Monitoring.
    Parsons M; Bratanov D; Gaston KJ; Gonzalez F
    Sensors (Basel); 2018 Jun; 18(7):. PubMed ID: 29941801
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Are unmanned aerial vehicle-based hyperspectral imaging and machine learning advancing crop science?
    Matese A; Prince Czarnecki JM; Samiappan S; Moorhead R
    Trends Plant Sci; 2024 Feb; 29(2):196-209. PubMed ID: 37802693
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of Deep-Learning Methods to Bird Detection Using Unmanned Aerial Vehicle Imagery.
    Hong SJ; Han Y; Kim SY; Lee AY; Kim G
    Sensors (Basel); 2019 Apr; 19(7):. PubMed ID: 30959913
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Infrastructure assessment post-disaster: Remotely sensing bridge structural damage by unmanned aerial vehicle in low-light conditions.
    A Baker C; R Rapp R; Elwakil E; Zhang J
    J Emerg Manag; 2020; 18(1):27-41. PubMed ID: 32031670
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Semi-automated detection of ungulates using UAV imagery and reflective spectrometry.
    De Kock ME; Pohůnek V; Hejcmanová P
    J Environ Manage; 2022 Oct; 320():115807. PubMed ID: 35944320
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep learning workflow to support in-flight processing of digital aerial imagery for wildlife population surveys.
    Ke TW; Yu SX; Koneff MD; Fronczak DL; Fara LJ; Harrison TJ; Landolt KL; Hlavacek EJ; Lubinski BR; White TP
    PLoS One; 2024; 19(4):e0288121. PubMed ID: 38568890
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatial Quality Evaluation of Resampled Unmanned Aerial Vehicle-Imagery for Weed Mapping.
    Borra-Serrano I; Peña JM; Torres-Sánchez J; Mesas-Carrascosa FJ; López-Granados F
    Sensors (Basel); 2015 Aug; 15(8):19688-708. PubMed ID: 26274960
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using Deep Learning and Low-Cost RGB and Thermal Cameras to Detect Pedestrians in Aerial Images Captured by Multirotor UAV.
    de Oliveira DC; Wehrmeister MA
    Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 30002290
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extraction of actionable information from crowdsourced disaster data.
    Kiatpanont R; Tanlamai U; Chongstitvatana P
    J Emerg Manag; 2016; 14(6):377-390. PubMed ID: 28101876
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of End-Of-Season Tuber Yield and Tuber Set in Potatoes Using In-Season UAV-Based Hyperspectral Imagery and Machine Learning.
    Sun C; Feng L; Zhang Z; Ma Y; Crosby T; Naber M; Wang Y
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32947919
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Precision wildlife monitoring using unmanned aerial vehicles.
    Hodgson JC; Baylis SM; Mott R; Herrod A; Clarke RH
    Sci Rep; 2016 Mar; 6():22574. PubMed ID: 26986721
    [TBL] [Abstract][Full Text] [Related]  

  • 16. UAV remote sensing applications in marine monitoring: Knowledge visualization and review.
    Yang Z; Yu X; Dedman S; Rosso M; Zhu J; Yang J; Xia Y; Tian Y; Zhang G; Wang J
    Sci Total Environ; 2022 Sep; 838(Pt 1):155939. PubMed ID: 35577092
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep Convolutional Neural Network for Flood Extent Mapping Using Unmanned Aerial Vehicles Data.
    Gebrehiwot A; Hashemi-Beni L; Thompson G; Kordjamshidi P; Langan TE
    Sensors (Basel); 2019 Mar; 19(7):. PubMed ID: 30934695
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unmanned aerial vehicles for surveying marine fauna: assessing detection probability.
    Hodgson A; Peel D; Kelly N
    Ecol Appl; 2017 Jun; 27(4):1253-1267. PubMed ID: 28178755
    [TBL] [Abstract][Full Text] [Related]  

  • 19. UAV and Machine Learning Based Refinement of a Satellite-Driven Vegetation Index for Precision Agriculture.
    Mazzia V; Comba L; Khaliq A; Chiaberge M; Gay P
    Sensors (Basel); 2020 Apr; 20(9):. PubMed ID: 32365636
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coupling of machine learning methods to improve estimation of ground coverage from unmanned aerial vehicle (UAV) imagery for high-throughput phenotyping of crops.
    Hu P; Chapman SC; Zheng B
    Funct Plant Biol; 2021 Jul; 48(8):766-779. PubMed ID: 33663681
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.