These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 27441719)

  • 1. Machine Learning Techniques for the Detection of Shockable Rhythms in Automated External Defibrillators.
    Figuera C; Irusta U; Morgado E; Aramendi E; Ayala U; Wik L; Kramer-Johansen J; Eftestøl T; Alonso-Atienza F
    PLoS One; 2016; 11(7):e0159654. PubMed ID: 27441719
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mixed convolutional and long short-term memory network for the detection of lethal ventricular arrhythmia.
    Picon A; Irusta U; Álvarez-Gila A; Aramendi E; Alonso-Atienza F; Figuera C; Ayala U; Garrote E; Wik L; Kramer-Johansen J; Eftestøl T
    PLoS One; 2019; 14(5):e0216756. PubMed ID: 31107876
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimization of End-to-End Convolutional Neural Networks for Analysis of Out-of-Hospital Cardiac Arrest Rhythms during Cardiopulmonary Resuscitation.
    Jekova I; Krasteva V
    Sensors (Basel); 2021 Jun; 21(12):. PubMed ID: 34203701
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ventricular fibrillation recorded and analysed within an area the size of a mobile phone: could it enable cardiac arrest recognition?
    Syväoja S; Rissanen TT; Hiltunen P; Castren M; Mäntylä P; Kivelä A; Uusaro A; Jäntti H
    Eur J Emerg Med; 2018 Dec; 25(6):394-399. PubMed ID: 30239348
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analyze Whilst Compressing algorithm for detection of ventricular fibrillation during CPR: A comparative performance evaluation for automated external defibrillators.
    Didon JP; Ménétré S; Jekova I; Stoyanov T; Krasteva V
    Resuscitation; 2021 Mar; 160():94-102. PubMed ID: 33524490
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fully Convolutional Deep Neural Networks with Optimized Hyperparameters for Detection of Shockable and Non-Shockable Rhythms.
    Krasteva V; Ménétré S; Didon JP; Jekova I
    Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32438582
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Machine and operator performance analysis of automated external defibrillator utilization.
    Ko PC; Lin CH; Lu TC; Ma MH; Chen WJ; Lin FY
    J Formos Med Assoc; 2005 Jul; 104(7):476-81. PubMed ID: 16091823
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ECG-based Random Forest Classifier for Cardiac Arrest Rhythms.
    Manibardo E; Irusta U; Ser JD; Aramendi E; Isasi I; Olabarria M; Corcuera C; Veintemillas J; Larrea A
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():1504-1508. PubMed ID: 31946179
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of community-wide deployment of biphasic waveform automated external defibrillators on out-of-hospital cardiac arrest in Taipei.
    Ko PC; Ma MH; Yen ZS; Shih CL; Chen WJ; Lin FY
    Resuscitation; 2004 Nov; 63(2):167-74. PubMed ID: 15531068
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep Feature Learning for Sudden Cardiac Arrest Detection in Automated External Defibrillators.
    Nguyen MT; Nguyen BV; Kim K
    Sci Rep; 2018 Nov; 8(1):17196. PubMed ID: 30464177
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection of Shockable Ventricular Arrhythmia using Variational Mode Decomposition.
    Tripathy RK; Sharma LN; Dandapat S
    J Med Syst; 2016 Apr; 40(4):79. PubMed ID: 26798076
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sensitivity and specificity of an automated external defibrillator algorithm designed for pediatric patients.
    Atkins DL; Scott WA; Blaufox AD; Law IH; Dick M; Geheb F; Sobh J; Brewer JE
    Resuscitation; 2008 Feb; 76(2):168-74. PubMed ID: 17765384
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A review of progress and an advanced method for shock advice algorithms in automated external defibrillators.
    Nguyen MT; Nguyen TT; Le HC
    Biomed Eng Online; 2022 Apr; 21(1):22. PubMed ID: 35366906
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automated detection of shockable and non-shockable arrhythmia using novel wavelet-based ECG features.
    Sharma M; Singh S; Kumar A; San Tan R; Acharya UR
    Comput Biol Med; 2019 Dec; 115():103446. PubMed ID: 31627019
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting defibrillation success in sudden cardiac arrest patients.
    Firoozabadi R; Nakagawa M; Helfenbein ED; Babaeizadeh S
    J Electrocardiol; 2013; 46(6):473-9. PubMed ID: 23871657
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Circulation assessment by automated external defibrillators during cardiopulmonary resuscitation.
    Ruiz JM; Ruiz de Gauna S; González-Otero DM; Saiz P; Gutiérrez JJ; Veintemillas JF; Bastida JM; Alonso D
    Resuscitation; 2018 Jul; 128():158-163. PubMed ID: 29733921
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inaccurate treatment decisions of automated external defibrillators used by emergency medical services personnel: incidence, cause and impact on outcome.
    Calle PA; Mpotos N; Calle SP; Monsieurs KG
    Resuscitation; 2015 Mar; 88():68-74. PubMed ID: 25556589
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Real time detection of ventricular fibrillation and tachycardia.
    Jekova I; Krasteva V
    Physiol Meas; 2004 Oct; 25(5):1167-78. PubMed ID: 15535182
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Robust Machine Learning Architecture for a Reliable ECG Rhythm Analysis during CPR.
    Isasi I; Irusta U; Elola A; Aramendi E; Eftestol T; Kramer-Johansen J; Wik L
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():1903-1907. PubMed ID: 31946270
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative assessment of shockable ECG rhythm detection algorithms in automated external defibrillators.
    Clifford AC
    Resuscitation; 1996 Oct; 32(3):217-25. PubMed ID: 8923585
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.