These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 27441826)
1. Inhibitor degradation and lipid accumulation potentials of oleaginous yeast Trichosporon cutaneum using lignocellulose feedstock. Wang J; Gao Q; Zhang H; Bao J Bioresour Technol; 2016 Oct; 218():892-901. PubMed ID: 27441826 [TBL] [Abstract][Full Text] [Related]
2. Genome sequence of Trichosporon cutaneum ACCC 20271: An oleaginous yeast with excellent lignocellulose derived inhibitor tolerance. Wang J; Gao Q; Bao J J Biotechnol; 2016 Jun; 228():50-51. PubMed ID: 27130500 [TBL] [Abstract][Full Text] [Related]
3. Converting lignin derived phenolic aldehydes into microbial lipid by Trichosporon cutaneum. Hu M; Wang J; Gao Q; Bao J J Biotechnol; 2018 Sep; 281():81-86. PubMed ID: 29925036 [TBL] [Abstract][Full Text] [Related]
4. Screening of oleaginous yeast strains tolerant to lignocellulose degradation compounds. Chen X; Li Z; Zhang X; Hu F; Ryu DD; Bao J Appl Biochem Biotechnol; 2009 Dec; 159(3):591-604. PubMed ID: 19156369 [TBL] [Abstract][Full Text] [Related]
5. Lipid fermentation of corncob residues hydrolysate by oleaginous yeast Trichosporon cutaneum. Gao Q; Cui Z; Zhang J; Bao J Bioresour Technol; 2014; 152():552-6. PubMed ID: 24321292 [TBL] [Abstract][Full Text] [Related]
6. Simultaneous saccharification and microbial lipid fermentation of corn stover by oleaginous yeast Trichosporon cutaneum. Liu W; Wang Y; Yu Z; Bao J Bioresour Technol; 2012 Aug; 118():13-8. PubMed ID: 22695140 [TBL] [Abstract][Full Text] [Related]
7. Tolerance of Trichosporon cutaneum to lignin derived phenolic aldehydes facilitate the cell growth and cellulosic lipid accumulation. Zhang Y; Bao J J Biotechnol; 2022 Jan; 343():32-37. PubMed ID: 34537255 [TBL] [Abstract][Full Text] [Related]
8. Biological removal of inhibitors leads to the improved lipid production in the lipid fermentation of corn stover hydrolysate by Trichosporon cutaneum. Huang X; Wang Y; Liu W; Bao J Bioresour Technol; 2011 Oct; 102(20):9705-9. PubMed ID: 21880481 [TBL] [Abstract][Full Text] [Related]
9. Analysis of metabolic fluxes for better understanding of mechanisms related to lipid accumulation in oleaginous yeast Trichosporon cutaneum. Liu Z; Gao Y; Chen J; Imanaka T; Bao J; Hua Q Bioresour Technol; 2013 Feb; 130():144-51. PubMed ID: 23306122 [TBL] [Abstract][Full Text] [Related]
10. Converting Chemical Oxygen Demand (COD) of Cellulosic Ethanol Fermentation Wastewater into Microbial Lipid by Oleaginous Yeast Trichosporon cutaneum. Wang J; Hu M; Zhang H; Bao J Appl Biochem Biotechnol; 2017 Jul; 182(3):1121-1130. PubMed ID: 28130766 [TBL] [Abstract][Full Text] [Related]
11. Semi-pilot Scale Microbial Oil Production by Trichosporon cutaneum Using Medium Containing Corncob Acid Hydrolysate. Qi GX; Huang C; Chen XF; Xiong L; Wang C; Lin XQ; Shi SL; Yang D; Chen XD Appl Biochem Biotechnol; 2016 Jun; 179(4):625-32. PubMed ID: 26906119 [TBL] [Abstract][Full Text] [Related]
12. Microbial Lipid Production from High Concentration of Volatile Fatty Acids via Trichosporon cutaneum for Biodiesel Preparation. Liu J; Zhou W; He Q; Zhao M; Gong Z Appl Biochem Biotechnol; 2022 Jul; 194(7):2968-2979. PubMed ID: 35316474 [TBL] [Abstract][Full Text] [Related]
13. Tolerance improvement of Corynebacterium glutamicum on lignocellulose derived inhibitors by adaptive evolution. Wang X; Khushk I; Xiao Y; Gao Q; Bao J Appl Microbiol Biotechnol; 2018 Jan; 102(1):377-388. PubMed ID: 29151160 [TBL] [Abstract][Full Text] [Related]
14. Transcriptome analysis of the dimorphic transition induced by pH change and lipid biosynthesis in Trichosporon cutaneum. Wang Y; Tang LJ; Peng X; Zhang ZB; Yang HL; Yan RM; Zhu D J Ind Microbiol Biotechnol; 2020 Jan; 47(1):49-61. PubMed ID: 31834585 [TBL] [Abstract][Full Text] [Related]
15. Cellulase mediated stress triggers the mutations of oleaginous yeast Trichosporon cutaneum with super-large spindle morphology and high lipid accumulation. Liu Q; Li Y; Hou W; Zhang B; Bao J Biotechnol J; 2023 Aug; 18(8):e2300091. PubMed ID: 37182226 [TBL] [Abstract][Full Text] [Related]
16. [Microbial oil production by Trichosporon cutaneum B3 using cassava starch]. Yuan J; Ai Z; Zhang Z; Yan R; Zeng Q; Zhu D Sheng Wu Gong Cheng Xue Bao; 2011 Mar; 27(3):453-60. PubMed ID: 21650027 [TBL] [Abstract][Full Text] [Related]
17. Evaluating the effect of medium composition and fermentation condition on the microbial oil production by Trichosporon cutaneum on corncob acid hydrolysate. Chen XF; Huang C; Yang XY; Xiong L; Chen XD; Ma LL Bioresour Technol; 2013 Sep; 143():18-24. PubMed ID: 23774292 [TBL] [Abstract][Full Text] [Related]
18. Use of elephant grass (Pennisetum purpureum) acid hydrolysate for microbial oil production by Trichosporon cutaneum. Chen XF; Huang C; Xiong L; Wang B; Qi GX; Lin XQ; Wang C; Chen XD Prep Biochem Biotechnol; 2016 Oct; 46(7):704-8. PubMed ID: 26771212 [TBL] [Abstract][Full Text] [Related]
19. Tolerance and adaptive evolution of triacylglycerol-producing Rhodococcus opacus to lignocellulose-derived inhibitors. Kurosawa K; Laser J; Sinskey AJ Biotechnol Biofuels; 2015; 8():76. PubMed ID: 26052344 [TBL] [Abstract][Full Text] [Related]
20. Beneficial effect of corncob acid hydrolysate on the lipid production by oleaginous yeast Trichosporon dermatis. Xiong L; Huang C; Yang XY; Lin XQ; Chen XF; Wang C; Wang B; Zeng XA; Chen XD Prep Biochem Biotechnol; 2015; 45(5):421-9. PubMed ID: 24840672 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]