BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

734 related articles for article (PubMed ID: 27441949)

  • 41. Interleukin-6 responses to water immersion therapy after acute exercise heat stress: a pilot investigation.
    Lee EC; Watson G; Casa D; Armstrong LE; Kraemer W; Vingren JL; Spiering BA; Maresh CM
    J Athl Train; 2012; 47(6):655-63. PubMed ID: 23182014
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Post-exercise management of exertional hyperthermia in dogs participating in dog sport (canicross) events in the UK.
    Carter AJ; Hall EJ; Bradbury J; Beard S; Gilbert S; Barfield D; O'Neill DG
    J Therm Biol; 2024 Apr; 121():103827. PubMed ID: 38518416
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Cooling Capacity of Transpulmonary Cooling and Cold-Water Immersion After Exercise-Induced Hyperthermia.
    Adams WM; Butke EE; Lee J; Zaplatosch ME
    J Athl Train; 2021 Apr; 56(4):383-388. PubMed ID: 33543267
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Initial heat stress on subsequent responses to cold water immersion while wearing protective clothing.
    Faerevik H; Reinertsen RE
    Aviat Space Environ Med; 2012 Aug; 83(8):746-50. PubMed ID: 22872987
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Ice water submersion for rapid cooling in severe drug-induced hyperthermia.
    Laskowski LK; Landry A; Vassallo SU; Hoffman RS
    Clin Toxicol (Phila); 2015 Mar; 53(3):181-4. PubMed ID: 25695144
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Pre-cooling with ice slurry ingestion leads to similar run times to exhaustion in the heat as cold water immersion.
    Siegel R; Maté J; Watson G; Nosaka K; Laursen PB
    J Sports Sci; 2012; 30(2):155-65. PubMed ID: 22132792
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Recommended water immersion duration for the field treatment of exertional heat stroke when rectal temperature is unavailable.
    Flouris AD; Notley SR; Stearns RL; Casa DJ; Kenny GP
    Eur J Appl Physiol; 2024 Feb; 124(2):479-490. PubMed ID: 37552243
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Predictive Ability of Body Fat Percentage and Thigh Anthropometrics on Tissue Cooling During Cold-Water Immersion.
    Rech N; Bressel E; Louder T
    J Athl Train; 2021 Jun; 56(6):548-554. PubMed ID: 33150428
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Tarp-Assisted Cooling for Exertional Heat Stroke Treatment in Wildland Firefighting.
    Pryor RR; Haboian K; Fitts T; Stooks JJ
    Wilderness Environ Med; 2023 Dec; 34(4):490-497. PubMed ID: 37748988
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Precooling, Exertional Heatstroke Risk Factors, and Postexercise Cooling Rates.
    Wohlfert TM; Miller KC
    Aerosp Med Hum Perform; 2019 Jan; 90(1):12-17. PubMed ID: 30579372
    [No Abstract]   [Full Text] [Related]  

  • 51. Cold Water Mediates Greater Reductions in Limb Blood Flow than Whole Body Cryotherapy.
    Mawhinney C; Low DA; Jones H; Green DJ; Costello JT; Gregson W
    Med Sci Sports Exerc; 2017 Jun; 49(6):1252-1260. PubMed ID: 28141620
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Ergogenic effects of precooling with cold water immersion and ice ingestion: A meta-analysis.
    Choo HC; Nosaka K; Peiffer JJ; Ihsan M; Abbiss CR
    Eur J Sport Sci; 2018 Mar; 18(2):170-181. PubMed ID: 29173092
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Whole-body cooling effectiveness of cold intravenous saline following exercise hyperthermia: a randomized trial.
    McDermott BP; Atkins WC
    Am J Emerg Med; 2023 Oct; 72():188-192. PubMed ID: 37562177
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Whole-body cooling of hyperthermic runners: comparison of two field therapies.
    Armstrong LE; Crago AE; Adams R; Roberts WO; Maresh CM
    Am J Emerg Med; 1996 Jul; 14(4):355-8. PubMed ID: 8768154
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Physiologic and Perceptual Responses to Cold-Shower Cooling After Exercise-Induced Hyperthermia.
    Butts CL; McDermott BP; Buening BJ; Bonacci JA; Ganio MS; Adams JD; Tucker MA; Kavouras SA
    J Athl Train; 2016 Mar; 51(3):252-7. PubMed ID: 26942657
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effectiveness of cold water immersion in the treatment of exertional heat stroke at the Falmouth Road Race.
    Demartini JK; Casa DJ; Stearns R; Belval L; Crago A; Davis R; Jardine J
    Med Sci Sports Exerc; 2015 Feb; 47(2):240-5. PubMed ID: 24983342
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The effect of dynamic exercise on resting cold thermoregulatory responses measured during water immersion.
    Kenny GP; Denis PM; Proulx CE; Giesbrecht GG
    Eur J Appl Physiol Occup Physiol; 1999 May; 79(6):495-9. PubMed ID: 10344458
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Cooling Modality Effectiveness and Mortality Associate With Prehospital Care of Exertional Heat Stroke Casualities.
    DeGroot DW; Henderson KN; O'Connor FG
    J Emerg Med; 2023 Feb; 64(2):175-180. PubMed ID: 36806435
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Postexercise cooling impairs muscle protein synthesis rates in recreational athletes.
    Fuchs CJ; Kouw IWK; Churchward-Venne TA; Smeets JSJ; Senden JM; Lichtenbelt WDVM; Verdijk LB; van Loon LJC
    J Physiol; 2020 Feb; 598(4):755-772. PubMed ID: 31788800
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Should Cooling Vests Be Used to Treat Exertional Heatstroke? A Critically Appraised Topic.
    Keen ML; Miller KC
    J Sport Rehabil; 2017 May; 26(3):286-289. PubMed ID: 27632849
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 37.