These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 27442279)

  • 1. In situ real-time imaging of self-sorted supramolecular nanofibres.
    Onogi S; Shigemitsu H; Yoshii T; Tanida T; Ikeda M; Kubota R; Hamachi I
    Nat Chem; 2016 Aug; 8(8):743-52. PubMed ID: 27442279
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Power of Confocal Laser Scanning Microscopy in Supramolecular Chemistry: In situ Real-time Imaging of Stimuli-Responsive Multicomponent Supramolecular Hydrogels.
    Kubota R; Nakamura K; Torigoe S; Hamachi I
    ChemistryOpen; 2020 Jan; 9(1):67-79. PubMed ID: 31988842
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An adaptive supramolecular hydrogel comprising self-sorting double nanofibre networks.
    Shigemitsu H; Fujisaku T; Tanaka W; Kubota R; Minami S; Urayama K; Hamachi I
    Nat Nanotechnol; 2018 Feb; 13(2):165-172. PubMed ID: 29311611
    [TBL] [Abstract][Full Text] [Related]  

  • 4. One-Pot Construction of Multicomponent Supramolecular Materials Comprising Self-Sorted Supramolecular Architectures of DNA and Semi-Artificial Glycopeptides.
    Higashi SL; Hirosawa KM; Suzuki KGN; Matsuura K; Ikeda M
    ACS Appl Bio Mater; 2020 Dec; 3(12):9082-9092. PubMed ID: 35019585
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatially resolved multicomponent gels.
    Draper ER; Eden EG; McDonald TO; Adams DJ
    Nat Chem; 2015 Oct; 7(10):848-52. PubMed ID: 26391086
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Super-resolution microscopy reveals structural diversity in molecular exchange among peptide amphiphile nanofibres.
    da Silva RM; van der Zwaag D; Albertazzi L; Lee SS; Meijer EW; Stupp SI
    Nat Commun; 2016 May; 7():11561. PubMed ID: 27194204
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Painting Supramolecular Polymers in Organic Solvents by Super-resolution Microscopy.
    Adelizzi B; Aloi A; Van Zee NJ; Palmans ARA; Meijer EW; Voets IK
    ACS Nano; 2018 May; 12(5):4431-4439. PubMed ID: 29697958
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In Situ, Noncovalent Labeling and Stimulated Emission Depletion-Based Super-Resolution Imaging of Supramolecular Peptide Nanostructures.
    Kumar M; Son J; Huang RH; Sementa D; Lee M; O'Brien S; Ulijn RV
    ACS Nano; 2020 Nov; 14(11):15056-15063. PubMed ID: 33169979
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diffusion across a gel-gel interface - molecular-scale mobility of self-assembled 'solid-like' gel nanofibres in multi-component supramolecular organogels.
    Ruíz-Olles J; Smith DK
    Chem Sci; 2018 Jul; 9(25):5541-5550. PubMed ID: 30061985
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of surface modification of nanofibres with glutamic acid peptide on calcium phosphate nucleation and osteogenic differentiation of marrow stromal cells.
    Karaman O; Kumar A; Moeinzadeh S; He X; Cui T; Jabbari E
    J Tissue Eng Regen Med; 2016 Feb; 10(2):E132-46. PubMed ID: 23897753
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hierarchical Composite Self-Sorted Supramolecular Gel Noodles.
    Marshall LJ; Wallace M; Mahmoudi N; Ciccone G; Wilson C; Vassalli M; Adams DJ
    Adv Mater; 2023 Apr; 35(17):e2211277. PubMed ID: 36720202
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of seed formation allows two distinct self-sorting patterns of supramolecular nanofibers.
    Kubota R; Nagao K; Tanaka W; Matsumura R; Aoyama T; Urayama K; Hamachi I
    Nat Commun; 2020 Aug; 11(1):4100. PubMed ID: 32796855
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A review on electrospinning design and nanofibre assemblies.
    Teo WE; Ramakrishna S
    Nanotechnology; 2006 Jul; 17(14):R89-R106. PubMed ID: 19661572
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hierarchically Compartmentalized Supramolecular Gels through Multilevel Self-Sorting.
    Wang Y; Lovrak M; Liu Q; Maity C; le Sage VAA; Guo X; Eelkema R; van Esch JH
    J Am Chem Soc; 2019 Feb; 141(7):2847-2851. PubMed ID: 30563317
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strong and fast-recovery organic/inorganic hybrid AuNPs-supramolecular gels based on loofah-like 3D networks.
    He H; Chen S; Tong X; Chen Y; Wu B; Ma M; Wang X; Wang X
    Soft Matter; 2016 Jan; 12(3):957-64. PubMed ID: 26568047
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Triggered Self-Sorting of Peptides to Form Higher-Order Assemblies in a Living System.
    Yang X; Lu H; Wu B; Wang H
    ACS Nano; 2022 Nov; 16(11):18244-18252. PubMed ID: 36255266
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cooperation between artificial receptors and supramolecular hydrogels for sensing and discriminating phosphate derivatives.
    Yamaguchi S; Yoshimura I; Kohira T; Tamaru S; Hamachi I
    J Am Chem Soc; 2005 Aug; 127(33):11835-41. PubMed ID: 16104762
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Supramolecular dendritic polymers: from synthesis to applications.
    Dong R; Zhou Y; Zhu X
    Acc Chem Res; 2014 Jul; 47(7):2006-16. PubMed ID: 24779892
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemically Fueled Self-Sorted Hydrogels.
    Singh N; Lopez-Acosta A; Formon GJM; Hermans TM
    J Am Chem Soc; 2022 Jan; 144(1):410-415. PubMed ID: 34932352
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlling and imaging biomimetic self-assembly.
    Aliprandi A; Mauro M; De Cola L
    Nat Chem; 2016 Jan; 8(1):10-5. PubMed ID: 26673259
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.