These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 27442329)

  • 1. Modeling of Running Performances in Humans: Comparison of Power Laws and Critical Speed.
    Zinoubi B; Vandewalle H; Driss T
    J Strength Cond Res; 2017 Jul; 31(7):1859-1867. PubMed ID: 27442329
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Times to exhaustion at 90, 100 and 105% of velocity at VO2 max (maximal aerobic speed) and critical speed in elite long-distance runners.
    Billat V; Renoux JC; Pinoteau J; Petit B; Koralsztein JP
    Arch Physiol Biochem; 1995 May; 103(2):129-35. PubMed ID: 9338084
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Hypoxemia and exhaustion time to maximal aerobic speed in long-distance runners].
    Billat V; Renoux JC; Pinoteau J; Petit B; Koralsztein JP
    Can J Appl Physiol; 1995 Mar; 20(1):102-11. PubMed ID: 7742766
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modelling of Running Performances: Comparisons of Power-Law, Hyperbolic, Logarithmic, and Exponential Models in Elite Endurance Runners.
    Vandewalle H
    Biomed Res Int; 2018; 2018():8203062. PubMed ID: 30402494
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Is the exhaustion time at maximal aerobic speed an index of aerobic endurance?
    Kachouri M; Vandewalle H; Huet M; Thomaïdis M; Jousselin E; Monod H
    Arch Physiol Biochem; 1996; 104(3):330-6. PubMed ID: 8793025
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of Submaximal Performances on Critical Speed and Power: Uses of an Arbitrary-Unit Method with Different Protocols.
    Vandewalle H
    Sports (Basel); 2019 May; 7(6):. PubMed ID: 31159341
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparison of time to exhaustion at VO2 max in élite cyclists, kayak paddlers, swimmers and runners.
    Billat V; Faina M; Sardella F; Marini C; Fanton F; Lupo S; Faccini P; de Angelis M; Koralsztein JP; Dalmonte A
    Ergonomics; 1996 Feb; 39(2):267-77. PubMed ID: 8851531
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Six Sessions of Sprint Interval Training Improves Running Performance in Trained Athletes.
    Koral J; Oranchuk DJ; Herrera R; Millet GY
    J Strength Cond Res; 2018 Mar; 32(3):617-623. PubMed ID: 29076961
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Relation between endurance time and maximal oxygen consumption during supramaximal running].
    Camus G; Juchmes J; Thys H; Fossion A
    J Physiol (Paris); 1988; 83(1):26-31. PubMed ID: 3183977
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of the Critical Heart Model to Treadmill Running.
    Bergstrom HC; Housh TJ; Cochrane KC; Jenkins ND; Buckner SL; Goldsmith JA; Zuniga JM; Schmidt RJ; Johnson GO; Cramer JT
    J Strength Cond Res; 2015 Aug; 29(8):2237-48. PubMed ID: 25647653
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Significance of the velocity at VO2max and time to exhaustion at this velocity.
    Billat LV; Koralsztein JP
    Sports Med; 1996 Aug; 22(2):90-108. PubMed ID: 8857705
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reproducibility of running time to exhaustion at VO2max in subelite runners.
    Billat V; Renoux JC; Pinoteau J; Petit B; Koralsztein JP
    Med Sci Sports Exerc; 1994 Feb; 26(2):254-7. PubMed ID: 8164545
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Critical velocity of continuous and intermittent running exercise. An example of the limits of the critical power concept.
    Kachouri M; Vandewalle H; Billat V; Huet M; Thomaïdis M; Jousselin E; Monod H
    Eur J Appl Physiol Occup Physiol; 1996; 73(5):484-7. PubMed ID: 8803511
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The V[Combining Dot Above]O2 Kinetics of Maximal and Supramaximal Running Exercises in Sprinters and Middle-Distance Runners.
    do Nascimento Salvador PC; Dal Pupo J; De Lucas RD; de Aguiar RA; Arins FB; Guglielmo LG
    J Strength Cond Res; 2016 Oct; 30(10):2857-63. PubMed ID: 26849787
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomechanical events in the time to exhaustion at maximum aerobic speed.
    Gazeau F; Koralsztein JP; Billat V
    Arch Physiol Biochem; 1997 Oct; 105(6):583-90. PubMed ID: 9587650
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential modeling of anaerobic and aerobic metabolism in the 800-m and 1,500-m run.
    Billat V; Hamard L; Koralsztein JP; Morton RH
    J Appl Physiol (1985); 2009 Aug; 107(2):478-87. PubMed ID: 19478190
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxygen deficit is related to the exercise time to exhaustion at maximal aerobic speed in middle distance runners.
    Renoux JC; Petit B; Billat V; Koralsztein JP
    Arch Physiol Biochem; 1999 Oct; 107(4):280-5. PubMed ID: 10779824
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physiological determinants of speciality of elite middle- and long-distance runners.
    Rabadán M; Díaz V; Calderón FJ; Benito PJ; Peinado AB; Maffulli N
    J Sports Sci; 2011 Jun; 29(9):975-82. PubMed ID: 21604227
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of fatigue on stride pattern continuously measured by an accelerometric gait recorder in middle distance runners.
    Le Bris R; Billat V; Auvinet B; Chaleil D; Hamard L; Barrey E
    J Sports Med Phys Fitness; 2006 Jun; 46(2):227-31. PubMed ID: 16823352
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energetics of middle-distance running performances in male and female junior using track measurements.
    Billat VL; Lepretre PM; Heugas AM; Koralsztein JP
    Jpn J Physiol; 2004 Apr; 54(2):125-35. PubMed ID: 15182419
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.