BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 27442348)

  • 1. Size, organization, and dynamics of soluble SQSTM1 and LC3-SQSTM1 complexes in living cells.
    Kraft LJ; Dowler J; Manral P; Kenworthy AK
    Autophagy; 2016 Sep; 12(9):1660-74. PubMed ID: 27442348
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The PB1 and the ZZ domain of the autophagy receptor p62/SQSTM1 regulate the interaction of p62/SQSTM1 with the autophagosome protein LC3B.
    Alcober-Boquet L; Zang T; Pietsch L; Suess E; Hartmann M; Proschak E; Gross LZF; Sacerdoti M; Zeuzem S; Rogov VV; Leroux AE; Piiper A; Biondi RM
    Protein Sci; 2024 Jan; 33(1):e4840. PubMed ID: 37984441
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The autophagic response to
    Prajsnar TK; Serba JJ; Dekker BM; Gibson JF; Masud S; Fleming A; Johnston SA; Renshaw SA; Meijer AH
    Autophagy; 2021 Apr; 17(4):888-902. PubMed ID: 32174246
    [No Abstract]   [Full Text] [Related]  

  • 4. Targeted interplay between bacterial pathogens and host autophagy.
    Sudhakar P; Jacomin AC; Hautefort I; Samavedam S; Fatemian K; Ari E; Gul L; Demeter A; Jones E; Korcsmaros T; Nezis IP
    Autophagy; 2019 Sep; 15(9):1620-1633. PubMed ID: 30909843
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The selective autophagy adaptor p62/SQSTM1 forms phase condensates regulated by HSP27 that facilitate the clearance of damaged lysosomes via lysophagy.
    Gallagher ER; Holzbaur ELF
    Cell Rep; 2023 Feb; 42(2):112037. PubMed ID: 36701233
    [TBL] [Abstract][Full Text] [Related]  

  • 6. p62- and ubiquitin-dependent stress-induced autophagy of the mammalian 26S proteasome.
    Cohen-Kaplan V; Livneh I; Avni N; Fabre B; Ziv T; Kwon YT; Ciechanover A
    Proc Natl Acad Sci U S A; 2016 Nov; 113(47):E7490-E7499. PubMed ID: 27791183
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nuclear LC3 Associates with Slowly Diffusing Complexes that Survey the Nucleolus.
    Kraft LJ; Manral P; Dowler J; Kenworthy AK
    Traffic; 2016 Apr; 17(4):369-99. PubMed ID: 26728248
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Artificial tethering of LC3 or p62 to organelles is not sufficient to trigger autophagy.
    Loos F; Xie W; Sica V; Bravo-San Pedro JM; Souquère S; Pierron G; Lachkar S; Sauvat A; Petrazzuolo A; Jimenez AJ; Perez F; Maiuri MC; Kepp O; Kroemer G
    Cell Death Dis; 2019 Oct; 10(10):771. PubMed ID: 31601788
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An ALS-associated variant of the autophagy receptor SQSTM1/p62 reprograms binding selectivity toward the autophagy-related hATG8 proteins.
    Brennan A; Layfield R; Long J; Williams HEL; Oldham NJ; Scott D; Searle MS
    J Biol Chem; 2022 Feb; 298(2):101514. PubMed ID: 34929165
    [TBL] [Abstract][Full Text] [Related]  

  • 10. BAG3 regulates the specificity of the recognition of specific MAPT species by NBR1 and SQSTM1.
    Lin H; Sandkuhler S; Dunlea C; Rodwell-Bullock J; King DH; Johnson GVW
    Autophagy; 2024 Mar; 20(3):577-589. PubMed ID: 37899687
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PARK7 modulates autophagic proteolysis through binding to the N-terminally arginylated form of the molecular chaperone HSPA5.
    Lee DH; Kim D; Kim ST; Jeong S; Kim JL; Shim SM; Heo AJ; Song X; Guo ZS; Bartlett DL; Oh SC; Lee J; Saito Y; Kim BY; Kwon YT; Lee YJ
    Autophagy; 2018; 14(11):1870-1885. PubMed ID: 29976090
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthetic autophagy receptor.
    Jiang Z; Kuo YH; Arkin MR
    Autophagy; 2024 Mar; 20(3):701-703. PubMed ID: 37934826
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A lipid membrane-centric role of the SQSTM1/p62 body during autophagosome formation.
    Zhang J; He X; Mi N
    Autophagy; 2024 May; 20(5):1192-1193. PubMed ID: 38115546
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prognostic value of the autophagy markers LC3 and p62/SQSTM1 in early-stage non-small cell lung cancer.
    Schläfli AM; Adams O; Galván JA; Gugger M; Savic S; Bubendorf L; Schmid RA; Becker KF; Tschan MP; Langer R; Berezowska S
    Oncotarget; 2016 Jun; 7(26):39544-39555. PubMed ID: 27250032
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vault-phagy: a phase-separation-mediated selective autophagy of vault, a non-membranous organelle.
    Kurusu R; Morishita H; Komatsu M
    Autophagy; 2024 Feb; 20(2):441-442. PubMed ID: 37815214
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ubiquitin-binding autophagic receptors in yeast: Cue5 and beyond.
    Mensah TNA; Shroff A; Nazarko TY
    Autophagy; 2023 Sep; 19(9):2590-2594. PubMed ID: 37062912
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The conformational and mutational landscape of the ubiquitin-like marker for autophagosome formation in cancer.
    Fas BA; Maiani E; Sora V; Kumar M; Mashkoor M; Lambrughi M; Tiberti M; Papaleo E
    Autophagy; 2021 Oct; 17(10):2818-2841. PubMed ID: 33302793
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SQSTM1/P62 promotes lysophagy via formation of liquid-like condensates maintained by HSP27.
    Gallagher ER; Holzbaur ELF
    Autophagy; 2023 Nov; 19(11):3029-3030. PubMed ID: 37194327
    [TBL] [Abstract][Full Text] [Related]  

  • 19. LC3/GABARAP binding to fluid membranes is potentiated by ceramide.
    Varela YR; Alonso A
    Autophagy; 2023 Apr; 19(4):1371-1373. PubMed ID: 36251508
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accumulation of Ubiquitin and Sequestosome-1 Implicate Protein Damage in Diacetyl-Induced Cytotoxicity.
    Hubbs AF; Fluharty KL; Edwards RJ; Barnabei JL; Grantham JT; Palmer SM; Kelly F; Sargent LM; Reynolds SH; Mercer RR; Goravanahally MP; Kashon ML; Honaker JC; Jackson MC; Cumpston AM; Goldsmith WT; McKinney W; Fedan JS; Battelli LA; Munro T; Bucklew-Moyers W; McKinstry K; Schwegler-Berry D; Friend S; Knepp AK; Smith SL; Sriram K
    Am J Pathol; 2016 Nov; 186(11):2887-2908. PubMed ID: 27643531
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.