These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 27442442)

  • 1. Effects of Macrophage Depletion on Sleep in Mice.
    Ames C; Boland E; Szentirmai É
    PLoS One; 2016; 11(7):e0159812. PubMed ID: 27442442
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sleep and body temperature in TNFα knockout mice: The effects of sleep deprivation, β3-AR stimulation and exogenous TNFα.
    Szentirmai É; Kapás L
    Brain Behav Immun; 2019 Oct; 81():260-271. PubMed ID: 31220563
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mice Lacking Alternatively Activated (M2) Macrophages Show Impairments in Restorative Sleep after Sleep Loss and in Cold Environment.
    Massie A; Boland E; Kapás L; Szentirmai É
    Sci Rep; 2018 Jun; 8(1):8625. PubMed ID: 29872141
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Counterpointing the functional role of the forebrain and of the brainstem in the control of the sleep-waking system.
    Villablanca JR
    J Sleep Res; 2004 Sep; 13(3):179-208. PubMed ID: 15339255
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphorylation of CaMKII in the rat dorsal raphe nucleus plays an important role in sleep-wake regulation.
    Cui SY; Li SJ; Cui XY; Zhang XQ; Yu B; Sheng ZF; Huang YL; Cao Q; Xu YP; Lin ZG; Yang G; Song JZ; Ding H; Wang ZJ; Zhang YH
    J Neurochem; 2016 Feb; 136(3):609-19. PubMed ID: 26558357
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deficiency of corticotropin-releasing hormone type-2 receptor alters sleep responses to bacterial lipopolysaccharide in mice.
    Jakubcakova V; Flachskamm C; Deussing JM; Kimura M
    Brain Behav Immun; 2011 Nov; 25(8):1626-36. PubMed ID: 21704697
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PKC in rat dorsal raphe nucleus plays a key role in sleep-wake regulation.
    Li SJ; Cui SY; Zhang XQ; Yu B; Sheng ZF; Huang YL; Cao Q; Xu YP; Lin ZG; Yang G; Cui XY; Zhang YH
    Prog Neuropsychopharmacol Biol Psychiatry; 2015 Dec; 63():47-53. PubMed ID: 25970525
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective contributions of neuronal and astroglial interleukin-1 receptor 1 to the regulation of sleep.
    Ingiosi AM; Raymond RM; Pavlova MN; Opp MR
    Brain Behav Immun; 2015 Aug; 48():244-57. PubMed ID: 25849975
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alterations in EEG activity and sleep after influenza viral infection in GHRH receptor-deficient mice.
    Alt JA; Obal F; Traynor TR; Gardi J; Majde JA; Krueger JM
    J Appl Physiol (1985); 2003 Aug; 95(2):460-8. PubMed ID: 12598490
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ovarian hormones promote recovery from sleep deprivation by increasing sleep intensity in middle-aged ovariectomized rats.
    Deurveilher S; Seary ME; Semba K
    Horm Behav; 2013 Apr; 63(4):566-76. PubMed ID: 23454003
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gadolinium chloride pretreatment prevents cafeteria diet-induced sleep in rats.
    Hansen MK; Krueger JM
    Sleep; 1999 Sep; 22(6):707-15. PubMed ID: 10505816
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxidized glutathione promotes sleep in rabbits.
    Kimura M; Kapás L; Krueger JM
    Brain Res Bull; 1998 Apr; 45(6):545-8. PubMed ID: 9566496
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photoperiod alters duration and intensity of non-rapid eye movement sleep following immune challenge in Siberian hamsters (Phodopus sungorus).
    Ashley NT; Zhang N; Weil ZM; Magalang UJ; Nelson RJ
    Chronobiol Int; 2012 Jul; 29(6):683-92. PubMed ID: 22734569
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sleep and immunomodulatory responses to systemic lipopolysaccharide in mice selectively expressing interleukin-1 receptor 1 on neurons or astrocytes.
    Ingiosi AM; Opp MR
    Glia; 2016 May; 64(5):780-91. PubMed ID: 26775112
    [TBL] [Abstract][Full Text] [Related]  

  • 15. c-Fos expression in preoptic nuclei as a marker of sleep rebound in the rat.
    Dentico D; Amici R; Baracchi F; Cerri M; Del Sindaco E; Luppi M; Martelli D; Perez E; Zamboni G
    Eur J Neurosci; 2009 Aug; 30(4):651-61. PubMed ID: 19686475
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diurnal variation of lipopolysaccharide-induced alterations in sleep and body temperature of interleukin-6-deficient mice.
    Morrow JD; Opp MR
    Brain Behav Immun; 2005 Jan; 19(1):40-51. PubMed ID: 15581737
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adrenergic signaling plays a critical role in the maintenance of waking and in the regulation of REM sleep.
    Ouyang M; Hellman K; Abel T; Thomas SA
    J Neurophysiol; 2004 Oct; 92(4):2071-82. PubMed ID: 15190089
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of brain interleukin-1 attenuates sleep rebound after sleep deprivation in rabbits.
    Takahashi S; Fang J; Kapás L; Wang Y; Krueger JM
    Am J Physiol; 1997 Aug; 273(2 Pt 2):R677-82. PubMed ID: 9277554
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Longitudinal analysis of the electroencephalogram and sleep phenotype in the R6/2 mouse model of Huntington's disease.
    Fisher SP; Black SW; Schwartz MD; Wilk AJ; Chen TM; Lincoln WU; Liu HW; Kilduff TS; Morairty SR
    Brain; 2013 Jul; 136(Pt 7):2159-72. PubMed ID: 23801738
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Growth hormone-releasing hormone and corticotropin-releasing hormone enhance non-rapid-eye-movement sleep after sleep deprivation.
    Schüssler P; Yassouridis A; Uhr M; Kluge M; Weikel J; Holsboer F; Steiger A
    Am J Physiol Endocrinol Metab; 2006 Sep; 291(3):E549-56. PubMed ID: 16912060
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.