BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

418 related articles for article (PubMed ID: 27442521)

  • 1. Nonhemolytic Cell-Penetrating Peptides: Site Specific Introduction of Glutamine and Lysine Residues into the α-Helical Peptide Causes Deletion of Its Direct Membrane Disrupting Ability but Retention of Its Cell Penetrating Ability.
    Kim S; Hyun S; Lee Y; Lee Y; Yu J
    Biomacromolecules; 2016 Sep; 17(9):3007-15. PubMed ID: 27442521
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design and Optimization of an α-Helical Bundle Dimer Cell-Penetrating Peptide for
    Hyun S; Kim D; Cho J; Jeong D; Chung DH; Yu J
    Bioconjug Chem; 2022 Dec; 33(12):2420-2427. PubMed ID: 36446084
    [TBL] [Abstract][Full Text] [Related]  

  • 3. siRNA delivery using amphipathic cell-penetrating peptides into human hepatoma cells.
    Furukawa K; Tanaka M; Oba M
    Bioorg Med Chem; 2020 Apr; 28(8):115402. PubMed ID: 32146061
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and synthesis of amphiphilic alpha-helical model peptides with systematically varied hydrophobic-hydrophilic balance and their interaction with lipid- and bio-membranes.
    Kiyota T; Lee S; Sugihara G
    Biochemistry; 1996 Oct; 35(40):13196-204. PubMed ID: 8855958
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conformationally constrained peptides for drug delivery.
    Jerath G; Goyal R; Trivedi V; Santhoshkumar TR; Ramakrishnan V
    J Pept Sci; 2020 Apr; 26(4-5):e3244. PubMed ID: 32128940
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of Hydrophobic Cell-Penetrating Stapled Peptides as Drug Carriers.
    Tsuchiya K; Horikoshi K; Fujita M; Hirano M; Miyamoto M; Yokoo H; Demizu Y
    Int J Mol Sci; 2023 Jul; 24(14):. PubMed ID: 37511527
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel amphipathic cell-penetrating peptide based on the N-terminal glycosaminoglycan binding region of human apolipoprotein E.
    Ohgita T; Takechi-Haraya Y; Nadai R; Kotani M; Tamura Y; Nishikiori K; Nishitsuji K; Uchimura K; Hasegawa K; Sakai-Kato K; Akaji K; Saito H
    Biochim Biophys Acta Biomembr; 2019 Mar; 1861(3):541-549. PubMed ID: 30562499
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of N-terminal and C-terminal modification on cytotoxicity and cellular uptake of amphiphilic cell penetrating peptides.
    Soleymani-Goloujeh M; Nokhodchi A; Niazi M; Najafi-Hajivar S; Shahbazi-Mojarrad J; Zarghami N; Zakeri-Milani P; Mohammadi A; Karimi M; Valizadeh H
    Artif Cells Nanomed Biotechnol; 2018; 46(sup1):91-103. PubMed ID: 29258339
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multistep optimization of a cell-penetrating peptide towards its antimicrobial activity.
    Drexelius M; Reinhardt A; Grabeck J; Cronenberg T; Nitsche F; Huesgen PF; Maier B; Neundorf I
    Biochem J; 2021 Jan; 478(1):63-78. PubMed ID: 33313751
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of Ala replacement with Aib in amphipathic cell-penetrating peptide on oligonucleotide delivery into cells.
    Wada S; Hashimoto Y; Kawai Y; Miyata K; Tsuda H; Nakagawa O; Urata H
    Bioorg Med Chem; 2013 Dec; 21(24):7669-73. PubMed ID: 24216093
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Charge Distribution Fine-Tunes the Translocation of α-Helical Amphipathic Peptides across Membranes.
    Ablan FDO; Spaller BL; Abdo KI; Almeida PF
    Biophys J; 2016 Oct; 111(8):1738-1749. PubMed ID: 27760360
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interactions of amphipathic CPPs with model membranes.
    Deshayes S; Konate K; Aldrian G; Heitz F; Divita G
    Methods Mol Biol; 2011; 683():41-56. PubMed ID: 21053121
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of tryptophans on the cellular uptake and membrane interaction of arginine-rich cell penetrating peptides.
    Jobin ML; Blanchet M; Henry S; Chaignepain S; Manigand C; Castano S; Lecomte S; Burlina F; Sagan S; Alves ID
    Biochim Biophys Acta; 2015 Feb; 1848(2):593-602. PubMed ID: 25445669
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of helicity and hydrophobicity on cell-penetrating ability of arginine-rich peptides.
    Oba M; Nakajima S; Misao K; Yokoo H; Tanaka M
    Bioorg Med Chem; 2023 Aug; 91():117409. PubMed ID: 37441862
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Challenge to overcome current limitations of cell-penetrating peptides.
    Kim GC; Cheon DH; Lee Y
    Biochim Biophys Acta Proteins Proteom; 2021 Apr; 1869(4):140604. PubMed ID: 33453413
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Disperse distribution of cationic amino acids on hydrophilic surface of helical wheel enhances antimicrobial peptide activity.
    Kim YS; Cha HJ
    Biotechnol Bioeng; 2010 Oct; 107(2):216-23. PubMed ID: 20506191
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cellular uptake of Aib-containing amphipathic helix peptide.
    Wada S; Tsuda H; Okada T; Urata H
    Bioorg Med Chem Lett; 2011 Oct; 21(19):5688-91. PubMed ID: 21875799
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photoswitching of Cell Penetration of Amphipathic Peptides by Control of α-Helical Conformation.
    Kim GC; Ahn JH; Oh JH; Nam S; Hyun S; Yu J; Lee Y
    Biomacromolecules; 2018 Jul; 19(7):2863-2869. PubMed ID: 29856603
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pro-apoptotic cationic host defense peptides rich in lysine or arginine to reverse drug resistance by disrupting tumor cell membrane.
    Dai Y; Cai X; Shi W; Bi X; Su X; Pan M; Li H; Lin H; Huang W; Qian H
    Amino Acids; 2017 Sep; 49(9):1601-1610. PubMed ID: 28664269
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction of amphiphilic α-helical cell-penetrating peptides with heparan sulfate.
    Yang J; Tsutsumi H; Furuta T; Sakurai M; Mihara H
    Org Biomol Chem; 2014 Jul; 12(26):4673-81. PubMed ID: 24867193
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.