These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 27442595)

  • 1. Latent segmentation based count models: Analysis of bicycle safety in Montreal and Toronto.
    Yasmin S; Eluru N
    Accid Anal Prev; 2016 Oct; 95(Pt A):157-71. PubMed ID: 27442595
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Macro-level vulnerable road users crash analysis: A Bayesian joint modeling approach of frequency and proportion.
    Cai Q; Abdel-Aty M; Lee J
    Accid Anal Prev; 2017 Oct; 107():11-19. PubMed ID: 28753415
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Macro-level pedestrian and bicycle crash analysis: Incorporating spatial spillover effects in dual state count models.
    Cai Q; Lee J; Eluru N; Abdel-Aty M
    Accid Anal Prev; 2016 Aug; 93():14-22. PubMed ID: 27153525
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Macroscopic spatial analysis of pedestrian and bicycle crashes.
    Siddiqui C; Abdel-Aty M; Choi K
    Accid Anal Prev; 2012 Mar; 45():382-91. PubMed ID: 22269522
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Roles of infrastructure and land use in bicycle crash exposure and frequency: A case study using Greater London bike sharing data.
    Ding H; Sze NN; Li H; Guo Y
    Accid Anal Prev; 2020 Sep; 144():105652. PubMed ID: 32559657
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Applying machine learning approaches to analyze the vulnerable road-users' crashes at statewide traffic analysis zones.
    Rahman MS; Abdel-Aty M; Hasan S; Cai Q
    J Safety Res; 2019 Sep; 70():275-288. PubMed ID: 31848006
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of zonal factors in estimating crash risks by transportation modes: Motor vehicle, bicycle and pedestrian.
    Wang J; Huang H; Zeng Q
    Accid Anal Prev; 2017 Jan; 98():223-231. PubMed ID: 27770688
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimation of bicycle crash modification factors (CMFs) on urban facilities using zero inflated negative binomial models.
    Raihan MA; Alluri P; Wu W; Gan A
    Accid Anal Prev; 2019 Feb; 123():303-313. PubMed ID: 30562669
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigating the gender differences on bicycle-vehicle conflicts at urban intersections using an ordered logit methodology.
    Stipancic J; Zangenehpour S; Miranda-Moreno L; Saunier N; Granié MA
    Accid Anal Prev; 2016 Dec; 97():19-27. PubMed ID: 27565041
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multivariate crash modeling for motor vehicle and non-motorized modes at the macroscopic level.
    Lee J; Abdel-Aty M; Jiang X
    Accid Anal Prev; 2015 May; 78():146-154. PubMed ID: 25790973
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An empirical tool to evaluate the safety of cyclists: Community based, macro-level collision prediction models using negative binomial regression.
    Wei F; Lovegrove G
    Accid Anal Prev; 2013 Dec; 61():129-37. PubMed ID: 22721549
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring the severity of bicycle-vehicle crashes using latent class clustering approach in India.
    Sivasankaran SK; Balasubramanian V
    J Safety Res; 2020 Feb; 72():127-138. PubMed ID: 32199555
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bicycling crash characteristics: An in-depth crash investigation study.
    Beck B; Stevenson M; Newstead S; Cameron P; Judson R; Edwards ER; Bucknill A; Johnson M; Gabbe B
    Accid Anal Prev; 2016 Nov; 96():219-227. PubMed ID: 27544886
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Road factors and bicycle-motor vehicle crashes at unsignalized priority intersections.
    Schepers JP; Kroeze PA; Sweers W; Wüst JC
    Accid Anal Prev; 2011 May; 43(3):853-61. PubMed ID: 21376876
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Traffic analysis zone level crash estimation models based on land use characteristics.
    Pulugurtha SS; Duddu VR; Kotagiri Y
    Accid Anal Prev; 2013 Jan; 50():678-87. PubMed ID: 22785088
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How bicycle level of traffic stress correlate with reported cyclist accidents injury severities: A geospatial and mixed logit analysis.
    Chen C; Anderson JC; Wang H; Wang Y; Vogt R; Hernandez S
    Accid Anal Prev; 2017 Nov; 108():234-244. PubMed ID: 28917096
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intersection crash prediction modeling with macro-level data from various geographic units.
    Lee J; Abdel-Aty M; Cai Q
    Accid Anal Prev; 2017 May; 102():213-226. PubMed ID: 28340414
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Developing Bicycle-Vehicle Crash-Specific Safety Performance Functions in Alabama Using Different Techniques.
    Shirani-Bidabadi N; Mallipaddi N; Haleem K; Anderson M
    Accid Anal Prev; 2020 Oct; 146():105735. PubMed ID: 32835954
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mapping cyclist activity and injury risk in a network combining smartphone GPS data and bicycle counts.
    Strauss J; Miranda-Moreno LF; Morency P
    Accid Anal Prev; 2015 Oct; 83():132-42. PubMed ID: 26253425
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using data mining techniques to predict the severity of bicycle crashes.
    Prati G; Pietrantoni L; Fraboni F
    Accid Anal Prev; 2017 Apr; 101():44-54. PubMed ID: 28189058
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.