BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 27442630)

  • 1. γ-Glutamyl kinase is involved in selective autophagy of ribosomes in Saccharomyces cerevisiae.
    Tatehashi Y; Watanabe D; Takagi H
    FEBS Lett; 2016 Sep; 590(17):2906-14. PubMed ID: 27442630
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mature ribosomes are selectively degraded upon starvation by an autophagy pathway requiring the Ubp3p/Bre5p ubiquitin protease.
    Kraft C; Deplazes A; Sohrmann M; Peter M
    Nat Cell Biol; 2008 May; 10(5):602-10. PubMed ID: 18391941
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Is the Rsp5 ubiquitin ligase involved in the regulation of ribophagy?
    Kraft C; Peter M
    Autophagy; 2008 Aug; 4(6):838-40. PubMed ID: 18670191
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isolation of baker's yeast mutants with proline accumulation that showed enhanced tolerance to baking-associated stresses.
    Tsolmonbaatar A; Hashida K; Sugimoto Y; Watanabe D; Furukawa S; Takagi H
    Int J Food Microbiol; 2016 Dec; 238():233-240. PubMed ID: 27672730
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Desensitization of feedback inhibition of the Saccharomyces cerevisiae gamma-glutamyl kinase enhances proline accumulation and freezing tolerance.
    Sekine T; Kawaguchi A; Hamano Y; Takagi H
    Appl Environ Microbiol; 2007 Jun; 73(12):4011-9. PubMed ID: 17449694
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cdc48 and Ufd3, new partners of the ubiquitin protease Ubp3, are required for ribophagy.
    Ossareh-Nazari B; Bonizec M; Cohen M; Dokudovskaya S; Delalande F; Schaeffer C; Van Dorsselaer A; Dargemont C
    EMBO Rep; 2010 Jul; 11(7):548-54. PubMed ID: 20508643
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ubiquitylation by the Ltn1 E3 ligase protects 60S ribosomes from starvation-induced selective autophagy.
    Ossareh-Nazari B; Niño CA; Bengtson MH; Lee JW; Joazeiro CA; Dargemont C
    J Cell Biol; 2014 Mar; 204(6):909-17. PubMed ID: 24616224
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of γ-glutamyl kinase mutants from Saccharomyces cerevisiae.
    Tatehashi Y; Takagi H
    J Biosci Bioeng; 2013 Nov; 116(5):576-9. PubMed ID: 23770122
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gene dosage effect of L-proline biosynthetic enzymes on L-proline accumulation and freeze tolerance in Saccharomyces cerevisiae.
    Terao Y; Nakamori S; Takagi H
    Appl Environ Microbiol; 2003 Nov; 69(11):6527-32. PubMed ID: 14602584
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lost to translation: when autophagy targets mature ribosomes.
    Beau I; Esclatine A; Codogno P
    Trends Cell Biol; 2008 Jul; 18(7):311-4. PubMed ID: 18508269
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Both the autophagy and proteasomal pathways facilitate the Ubp3p-dependent depletion of a subset of translation and RNA turnover factors during nitrogen starvation in Saccharomyces cerevisiae.
    Kelly SP; Bedwell DM
    RNA; 2015 May; 21(5):898-910. PubMed ID: 25795416
    [TBL] [Abstract][Full Text] [Related]  

  • 12. L-proline accumulation and freeze tolerance of Saccharomyces cerevisiae are caused by a mutation in the PRO1 gene encoding gamma-glutamyl kinase.
    Morita Y; Nakamori S; Takagi H
    Appl Environ Microbiol; 2003 Jan; 69(1):212-9. PubMed ID: 12513997
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proline biosynthesis in Saccharomyces cerevisiae: molecular analysis of the PRO1 gene, which encodes gamma-glutamyl kinase.
    Li W; Brandriss MC
    J Bacteriol; 1992 Jun; 174(12):4148-56. PubMed ID: 1350780
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional analysis of the C-terminal region of γ-glutamyl kinase of Saccharomyces cerevisiae.
    Kaino T; Tasaka Y; Tatehashi Y; Takagi H
    Biosci Biotechnol Biochem; 2012; 76(3):454-61. PubMed ID: 22451384
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of a novel variant of the yeast γ-glutamyl kinase Pro1 on its enzymatic activity and sake brewing.
    Murakami N; Kotaka A; Isogai S; Ashida K; Nishimura A; Matsumura K; Hata Y; Ishida H; Takagi H
    J Ind Microbiol Biotechnol; 2020 Oct; 47(9-10):715-723. PubMed ID: 32748014
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rim15 and Sch9 kinases are involved in induction of autophagic degradation of ribosomes in budding yeast.
    Waliullah TM; Yeasmin AM; Kaneko A; Koike N; Terasawa M; Totsuka T; Ushimaru T
    Biosci Biotechnol Biochem; 2017 Feb; 81(2):307-310. PubMed ID: 27659307
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Escherichia coli proB gene corrects the proline auxotrophy of Saccharomyces cerevisiae pro1 mutants.
    Orser CS; Goodner BW; Johnston M; Gelvin SB; Csonka LN
    Mol Gen Genet; 1988 Apr; 212(1):124-8. PubMed ID: 2836700
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proline as a stress protectant in the yeast Saccharomyces cerevisiae: effects of trehalose and PRO1 gene expression on stress tolerance.
    Kaino T; Takagi H
    Biosci Biotechnol Biochem; 2009 Sep; 73(9):2131-5. PubMed ID: 19734662
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthetic quantitative array technology identifies the Ubp3-Bre5 deubiquitinase complex as a negative regulator of mitophagy.
    Müller M; Kötter P; Behrendt C; Walter E; Scheckhuber CQ; Entian KD; Reichert AS
    Cell Rep; 2015 Feb; 10(7):1215-25. PubMed ID: 25704822
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancement of the proline and nitric oxide synthetic pathway improves fermentation ability under multiple baking-associated stress conditions in industrial baker's yeast.
    Sasano Y; Haitani Y; Hashida K; Ohtsu I; Shima J; Takagi H
    Microb Cell Fact; 2012 Apr; 11():40. PubMed ID: 22462683
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.