BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

59 related articles for article (PubMed ID: 27442849)

  • 1. Global phenotypic and genomic comparison of two Saccharomyces cerevisiae wine strains reveals a novel role of the sulfur assimilation pathway in adaptation at low temperature fermentations.
    García-Ríos E; López-Malo M; Guillamón JM
    BMC Genomics; 2014 Dec; 15(1):1059. PubMed ID: 25471357
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Disentangling the genetic bases of Saccharomyces cerevisiae nitrogen consumption and adaptation to low nitrogen environments in wine fermentation.
    Kessi-Pérez EI; Molinet J; Martínez C
    Biol Res; 2020 Jan; 53(1):2. PubMed ID: 31918759
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extensive Copy Number Variation in Fermentation-Related Genes Among
    Steenwyk J; Rokas A
    G3 (Bethesda); 2017 May; 7(5):1475-1485. PubMed ID: 28292787
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptomic and proteomic approach for understanding the molecular basis of adaptation of Saccharomyces cerevisiae to wine fermentation.
    Zuzuarregui A; Monteoliva L; Gil C; del Olmo Ml
    Appl Environ Microbiol; 2006 Jan; 72(1):836-47. PubMed ID: 16391125
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolutionary engineering of a wine yeast strain revealed a key role of inositol and mannoprotein metabolism during low-temperature fermentation.
    López-Malo M; García-Rios E; Melgar B; Sanchez MR; Dunham MJ; Guillamón JM
    BMC Genomics; 2015 Jul; 16(1):537. PubMed ID: 26194190
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential proteomic analysis by SWATH-MS unravels the most dominant mechanisms underlying yeast adaptation to non-optimal temperatures under anaerobic conditions.
    Pinheiro T; Lip KYF; García-Ríos E; Querol A; Teixeira J; van Gulik W; Guillamón JM; Domingues L
    Sci Rep; 2020 Dec; 10(1):22329. PubMed ID: 33339840
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic Engineering of Wine Strains of
    Eldarov MA; Mardanov AV
    Genes (Basel); 2020 Aug; 11(9):. PubMed ID: 32825346
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The fitness advantage of commercial wine yeasts in relation to the nitrogen concentration, temperature, and ethanol content under microvinification conditions.
    García-Ríos E; Gutiérrez A; Salvadó Z; Arroyo-López FN; Guillamon JM
    Appl Environ Microbiol; 2014 Jan; 80(2):704-13. PubMed ID: 24242239
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of homothallic Saccharomyces cerevisiae strain mating during must fermentation.
    Ambrona J; Ramírez M
    Appl Environ Microbiol; 2007 Apr; 73(8):2486-90. PubMed ID: 17322328
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Construction of sterile ime1Delta-transgenic Saccharomyces cerevisiae wine yeasts unable to disseminate in nature.
    Ramírez M; Ambrona J
    Appl Environ Microbiol; 2008 Apr; 74(7):2129-34. PubMed ID: 18245242
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic variation and expression changes associated with molybdate resistance from a glutathione producing wine strain of Saccharomyces cerevisiae.
    Mezzetti F; Fay JC; Giudici P; De Vero L
    PLoS One; 2017; 12(7):e0180814. PubMed ID: 28683117
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Copy Number Variation in Fungi and Its Implications for Wine Yeast Genetic Diversity and Adaptation.
    Steenwyk JL; Rokas A
    Front Microbiol; 2018; 9():288. PubMed ID: 29520259
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Translation variation across genetic backgrounds reveals a post-transcriptional buffering signature in yeast.
    Teyssonniere EM; Shichino Y; Mito M; Friedrich A; Iwasaki S; Schacherer J
    Nucleic Acids Res; 2024 Mar; 52(5):2434-2445. PubMed ID: 38261993
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Next Generation Winemakers: Genetic Engineering in
    Molina-Espeja P
    Bioengineering (Basel); 2020 Oct; 7(4):. PubMed ID: 33066502
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNA Methylation Changes Induced by Cold in Psychrophilic and Psychrotolerant
    Turchetti B; Marconi G; Sannino C; Buzzini P; Albertini E
    Microorganisms; 2020 Feb; 8(2):. PubMed ID: 32093408
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel brewing yeast hybrids: creation and application.
    Krogerus K; Magalhães F; Vidgren V; Gibson B
    Appl Microbiol Biotechnol; 2017 Jan; 101(1):65-78. PubMed ID: 27885413
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome-wide identification of genes involved in growth and fermentation activity at low temperature in Saccharomyces cerevisiae.
    Salvadó Z; Ramos-Alonso L; Tronchoni J; Penacho V; García-Ríos E; Morales P; Gonzalez R; Guillamón JM
    Int J Food Microbiol; 2016 Nov; 236():38-46. PubMed ID: 27442849
    [TBL] [Abstract][Full Text] [Related]  

  • 18. iTRAQ-based proteome profiling of Saccharomyces cerevisiae and cryotolerant species Saccharomyces uvarum and Saccharomyces kudriavzevii during low-temperature wine fermentation.
    García-Ríos E; Querol A; Guillamón JM
    J Proteomics; 2016 Sep; 146():70-9. PubMed ID: 27343759
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional analysis to identify genes in wine yeast adaptation to low-temperature fermentation.
    Salvadó Z; Chiva R; Rozès N; Cordero-Otero R; Guillamón JM
    J Appl Microbiol; 2012 Jul; 113(1):76-88. PubMed ID: 22507142
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.