These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 27442891)

  • 1. Cellular elimination of nanoparticles.
    Fröhlich E
    Environ Toxicol Pharmacol; 2016 Sep; 46():90-94. PubMed ID: 27442891
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exocytosis of nanoparticles from cells: role in cellular retention and toxicity.
    Sakhtianchi R; Minchin RF; Lee KB; Alkilany AM; Serpooshan V; Mahmoudi M
    Adv Colloid Interface Sci; 2013 Dec; 201-202():18-29. PubMed ID: 24200091
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intracellular uptake, transport, and processing of gold nanostructures.
    Chithrani DB
    Mol Membr Biol; 2010 Oct; 27(7):299-311. PubMed ID: 20929337
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Complying with the physiological functions of Golgi apparatus for secretory exocytosis facilitated oral absorption of protein drugs.
    Xing L; Zheng Y; Yu Y; Wu R; Liu X; Zhou R; Huang Y
    J Mater Chem B; 2021 Feb; 9(6):1707-1718. PubMed ID: 33496710
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Uptake and intracellular localization of submicron and nano-sized SiO₂ particles in HeLa cells.
    Al-Rawi M; Diabaté S; Weiss C
    Arch Toxicol; 2011 Jul; 85(7):813-26. PubMed ID: 21240478
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polymeric nanoparticles promote endocytosis of a survivin molecular beacon: Localization and fate of nanoparticles and beacon in human A549 cells.
    Adinolfi B; Pellegrino M; Tombelli S; Trono C; Giannetti A; Domenici C; Varchi G; Sotgiu G; Ballestri M; Baldini F
    Life Sci; 2018 Dec; 215():106-112. PubMed ID: 30412722
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface charge affects cellular uptake and intracellular trafficking of chitosan-based nanoparticles.
    Yue ZG; Wei W; Lv PP; Yue H; Wang LY; Su ZG; Ma GH
    Biomacromolecules; 2011 Jul; 12(7):2440-6. PubMed ID: 21657799
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alveolar epithelial cell processing of nanoparticles activates autophagy and lysosomal exocytosis.
    Sipos A; Kim KJ; Chow RH; Flodby P; Borok Z; Crandall ED
    Am J Physiol Lung Cell Mol Physiol; 2018 Aug; 315(2):L286-L300. PubMed ID: 29722567
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoparticles: cellular uptake and cytotoxicity.
    Adjei IM; Sharma B; Labhasetwar V
    Adv Exp Med Biol; 2014; 811():73-91. PubMed ID: 24683028
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exocytosis of Nanoparticles: A Comprehensive Review.
    Liu J; Liu YY; Li CS; Cao A; Wang H
    Nanomaterials (Basel); 2023 Jul; 13(15):. PubMed ID: 37570533
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluating the uptake and intracellular fate of polystyrene nanoparticles by primary and hepatocyte cell lines in vitro.
    Johnston HJ; Semmler-Behnke M; Brown DM; Kreyling W; Tran L; Stone V
    Toxicol Appl Pharmacol; 2010 Jan; 242(1):66-78. PubMed ID: 19799923
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cellular uptake, evolution, and excretion of silica nanoparticles in human cells.
    Chu Z; Huang Y; Tao Q; Li Q
    Nanoscale; 2011 Aug; 3(8):3291-9. PubMed ID: 21743927
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative considerations about the size dependence of cellular entry and excretion of colloidal nanoparticles for different cell types.
    Kang Y; Nack LM; Liu Y; Qi B; Huang Y; Liu Z; Chakraborty I; Schulz F; Ahmed AAA; Clavo Poveda M; Hafizi F; Roy S; Mutas M; Holzapfel M; Sanchez-Cano C; Wegner KD; Feliu N; Parak WJ
    ChemTexts; 2022; 8(1):9. PubMed ID: 35223376
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of rhodamine loaded PEG-g-PLA nanoparticles (NPs): effect of poly(ethylene glycol) grafting density.
    Essa S; Rabanel JM; Hildgen P
    Int J Pharm; 2011 Jun; 411(1-2):178-87. PubMed ID: 21458551
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oral uptake of nanoparticles: human relevance and the role of in vitro systems.
    Fröhlich E; Roblegg E
    Arch Toxicol; 2016 Oct; 90(10):2297-314. PubMed ID: 27342244
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Uptake kinetics and nanotoxicity of silica nanoparticles are cell type dependent.
    Blechinger J; Bauer AT; Torrano AA; Gorzelanny C; Bräuchle C; Schneider SW
    Small; 2013 Dec; 9(23):3970-80, 3906. PubMed ID: 23681841
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of cell size on cellular uptake of gold nanoparticles.
    Wang X; Hu X; Li J; Russe AC; Kawazoe N; Yang Y; Chen G
    Biomater Sci; 2016 Jun; 4(6):970-8. PubMed ID: 27095054
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Particle size affects the cellular response in macrophages.
    Yue H; Wei W; Yue Z; Lv P; Wang L; Ma G; Su Z
    Eur J Pharm Sci; 2010 Dec; 41(5):650-7. PubMed ID: 20870022
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering Chimeric Receptors To Investigate the Size- and Rigidity-Dependent Interaction of PEGylated Nanoparticles with Cells.
    Huang WC; Burnouf PA; Su YC; Chen BM; Chuang KH; Lee CW; Wei PK; Cheng TL; Roffler SR
    ACS Nano; 2016 Jan; 10(1):648-62. PubMed ID: 26741147
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid endo-lysosomal escape of poly(DL-lactide-co-glycolide) nanoparticles: implications for drug and gene delivery.
    Panyam J; Zhou WZ; Prabha S; Sahoo SK; Labhasetwar V
    FASEB J; 2002 Aug; 16(10):1217-26. PubMed ID: 12153989
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.