BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 27442953)

  • 1. Advances in understanding the mechanisms of erythropoiesis in homeostasis and disease.
    Liang R; Ghaffari S
    Br J Haematol; 2016 Sep; 174(5):661-73. PubMed ID: 27442953
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Systems Approach Identifies Essential FOXO3 Functions at Key Steps of Terminal Erythropoiesis.
    Liang R; Campreciós G; Kou Y; McGrath K; Nowak R; Catherman S; Bigarella CL; Rimmelé P; Zhang X; Gnanapragasam MN; Bieker JJ; Papatsenko D; Ma'ayan A; Bresnick E; Fowler V; Palis J; Ghaffari S
    PLoS Genet; 2015 Oct; 11(10):e1005526. PubMed ID: 26452208
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mutual Cross Talk Between Iron Homeostasis and Erythropoiesis.
    Rybinska I; Cairo G
    Vitam Horm; 2017; 105():143-160. PubMed ID: 28629515
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GATA factor switching during erythroid differentiation.
    Kaneko H; Shimizu R; Yamamoto M
    Curr Opin Hematol; 2010 May; 17(3):163-8. PubMed ID: 20216212
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Knockdown of transcription factor forkhead box O3 (FOXO3) suppresses erythroid differentiation in human cells and zebrafish.
    Wang H; Li Y; Wang S; Zhang Q; Zheng J; Yang Y; Qi H; Qu H; Zhang Z; Liu F; Fang X
    Biochem Biophys Res Commun; 2015 May; 460(4):923-30. PubMed ID: 25843800
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A critical role for murine transferrin receptor 2 in erythropoiesis during iron restriction.
    Wallace DF; Secondes ES; Rishi G; Ostini L; McDonald CJ; Lane SW; Vu T; Hooper JD; Velasco G; Ramsay AJ; Lopez-Otin C; Subramaniam VN
    Br J Haematol; 2015 Mar; 168(6):891-901. PubMed ID: 25403101
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low oxygen concentration as a general physiologic regulator of erythropoiesis beyond the EPO-related downstream tuning and a tool for the optimization of red blood cell production ex vivo.
    Vlaski M; Lafarge X; Chevaleyre J; Duchez P; Boiron JM; Ivanovic Z
    Exp Hematol; 2009 May; 37(5):573-84. PubMed ID: 19375648
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Csk-binding protein controls red blood cell development via regulation of Lyn tyrosine kinase activity.
    Plani-Lam JH; Slavova-Azmanova NS; Kucera N; Louw A; Satiaputra J; Singer P; Lam KP; Hibbs ML; Ingley E
    Exp Hematol; 2017 Feb; 46():70-82.e10. PubMed ID: 27751872
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Translational regulation and deregulation in erythropoiesis.
    Vatikioti A; Karkoulia E; Ioannou M; Strouboulis J
    Exp Hematol; 2019 Jul; 75():11-20. PubMed ID: 31154069
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fine-Tuning of Cholesterol Homeostasis Controls Erythroid Differentiation.
    Lu Z; Huang L; Li Y; Xu Y; Zhang R; Zhou Q; Sun Q; Lu Y; Chen J; Shen Y; Li J; Zhao B
    Adv Sci (Weinh); 2022 Jan; 9(2):e2102669. PubMed ID: 34739188
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Iron metabolism: interactions with normal and disordered erythropoiesis.
    Ganz T; Nemeth E
    Cold Spring Harb Perspect Med; 2012 May; 2(5):a011668. PubMed ID: 22553501
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ineffective erythropoiesis and thalassemias.
    Rivella S
    Curr Opin Hematol; 2009 May; 16(3):187-94. PubMed ID: 19318943
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Erythropoiesis: model systems, molecular regulators, and developmental programs.
    Tsiftsoglou AS; Vizirianakis IS; Strouboulis J
    IUBMB Life; 2009 Aug; 61(8):800-30. PubMed ID: 19621348
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New insights into iron regulation and erythropoiesis.
    Kim A; Nemeth E
    Curr Opin Hematol; 2015 May; 22(3):199-205. PubMed ID: 25710710
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advances in understanding erythropoiesis: evolving perspectives.
    Nandakumar SK; Ulirsch JC; Sankaran VG
    Br J Haematol; 2016 Apr; 173(2):206-18. PubMed ID: 26846448
    [TBL] [Abstract][Full Text] [Related]  

  • 16. FOXO3-mTOR metabolic cooperation in the regulation of erythroid cell maturation and homeostasis.
    Zhang X; Campreciós G; Rimmelé P; Liang R; Yalcin S; Mungamuri SK; Barminko J; D'Escamard V; Baron MH; Brugnara C; Papatsenko D; Rivella S; Ghaffari S
    Am J Hematol; 2014 Oct; 89(10):954-63. PubMed ID: 24966026
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ineffective Erythropoiesis in β-Thalassaemia: Key Steps and Therapeutic Options by Drugs.
    Longo F; Piolatto A; Ferrero GB; Piga A
    Int J Mol Sci; 2021 Jul; 22(13):. PubMed ID: 34281283
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Erythropoiesis: a paradigm for the role of caspases in cell death and differentiation].
    Ribeil JA; Zermati Y; Vandekerckhove J; Dussiot M; Kersual J; Hermine O
    J Soc Biol; 2005; 199(3):219-31. PubMed ID: 16471262
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Foxo3 is required for the regulation of oxidative stress in erythropoiesis.
    Marinkovic D; Zhang X; Yalcin S; Luciano JP; Brugnara C; Huber T; Ghaffari S
    J Clin Invest; 2007 Aug; 117(8):2133-44. PubMed ID: 17671650
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Red Carpet for Iron Metabolism.
    Muckenthaler MU; Rivella S; Hentze MW; Galy B
    Cell; 2017 Jan; 168(3):344-361. PubMed ID: 28129536
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.