These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 27443316)
1. The rationale for preventing cancer cachexia: targeting excessive fatty acid oxidation. Qian CN Chin J Cancer; 2016 Jul; 35(1):67. PubMed ID: 27443316 [TBL] [Abstract][Full Text] [Related]
2. Excessive fatty acid oxidation induces muscle atrophy in cancer cachexia. Fukawa T; Yan-Jiang BC; Min-Wen JC; Jun-Hao ET; Huang D; Qian CN; Ong P; Li Z; Chen S; Mak SY; Lim WJ; Kanayama HO; Mohan RE; Wang RR; Lai JH; Chua C; Ong HS; Tan KK; Ho YS; Tan IB; Teh BT; Shyh-Chang N Nat Med; 2016 Jun; 22(6):666-71. PubMed ID: 27135739 [TBL] [Abstract][Full Text] [Related]
3. Linking Cancer Cachexia-Induced Anabolic Resistance to Skeletal Muscle Oxidative Metabolism. Hardee JP; Montalvo RN; Carson JA Oxid Med Cell Longev; 2017; 2017():8018197. PubMed ID: 29375734 [TBL] [Abstract][Full Text] [Related]
4. Molecular pathways leading to loss of skeletal muscle mass in cancer cachexia--can findings from animal models be translated to humans? Mueller TC; Bachmann J; Prokopchuk O; Friess H; Martignoni ME BMC Cancer; 2016 Feb; 16():75. PubMed ID: 26856534 [TBL] [Abstract][Full Text] [Related]
5. TNF-α and cancer cachexia: Molecular insights and clinical implications. Patel HJ; Patel BM Life Sci; 2017 Feb; 170():56-63. PubMed ID: 27919820 [TBL] [Abstract][Full Text] [Related]
6. Mechanism of attenuation of skeletal muscle protein catabolism in cancer cachexia by eicosapentaenoic acid. Whitehouse AS; Smith HJ; Drake JL; Tisdale MJ Cancer Res; 2001 May; 61(9):3604-9. PubMed ID: 11325828 [TBL] [Abstract][Full Text] [Related]
7. Muscle-specific E3 ubiquitin ligases are involved in muscle atrophy of cancer cachexia: an in vitro and in vivo study. Yuan L; Han J; Meng Q; Xi Q; Zhuang Q; Jiang Y; Han Y; Zhang B; Fang J; Wu G Oncol Rep; 2015 May; 33(5):2261-8. PubMed ID: 25760630 [TBL] [Abstract][Full Text] [Related]
8. Molecular Pathways: Cachexia Signaling-A Targeted Approach to Cancer Treatment. Miyamoto Y; Hanna DL; Zhang W; Baba H; Lenz HJ Clin Cancer Res; 2016 Aug; 22(16):3999-4004. PubMed ID: 27340276 [TBL] [Abstract][Full Text] [Related]
9. [Basic Science of Cancer Cachexia]. Aoki M; Kojima Y Gan To Kagaku Ryoho; 2019 Dec; 46(12):1818-1822. PubMed ID: 31879395 [TBL] [Abstract][Full Text] [Related]
10. Molecular mechanism of sarcopenia and cachexia: recent research advances. Sakuma K; Aoi W; Yamaguchi A Pflugers Arch; 2017 Jun; 469(5-6):573-591. PubMed ID: 28101649 [TBL] [Abstract][Full Text] [Related]
11. The emerging role of skeletal muscle oxidative metabolism as a biological target and cellular regulator of cancer-induced muscle wasting. Carson JA; Hardee JP; VanderVeen BN Semin Cell Dev Biol; 2016 Jun; 54():53-67. PubMed ID: 26593326 [TBL] [Abstract][Full Text] [Related]
12. Mechanisms to explain wasting of muscle and fat in cancer cachexia. Argilés JM; López-Soriano FJ; Busquets S Curr Opin Support Palliat Care; 2007 Dec; 1(4):293-8. PubMed ID: 18685378 [TBL] [Abstract][Full Text] [Related]
13. [Systemic and local mechanisms leading to cachexia in cancer]. Grabiec K; Burchert M; Milewska M; Błaszczyk M; Grzelkowska-Kowalczyk K Postepy Hig Med Dosw (Online); 2013 Dec; 67():1397-409. PubMed ID: 24493689 [TBL] [Abstract][Full Text] [Related]
14. Comparative molecular analysis of early and late cancer cachexia-induced muscle wasting in mouse models. Sun R; Zhang S; Lu X; Hu W; Lou N; Zhao Y; Zhou J; Zhang X; Yang H Oncol Rep; 2016 Dec; 36(6):3291-3302. PubMed ID: 27748895 [TBL] [Abstract][Full Text] [Related]
15. Oxidative stress, redox signaling pathways, and autophagy in cachectic muscles of male patients with advanced COPD and lung cancer. Puig-Vilanova E; Rodriguez DA; Lloreta J; Ausin P; Pascual-Guardia S; Broquetas J; Roca J; Gea J; Barreiro E Free Radic Biol Med; 2015 Feb; 79():91-108. PubMed ID: 25464271 [TBL] [Abstract][Full Text] [Related]
16. Role of fatty acid uptake and fatty acid beta-oxidation in mediating insulin resistance in heart and skeletal muscle. Zhang L; Keung W; Samokhvalov V; Wang W; Lopaschuk GD Biochim Biophys Acta; 2010 Jan; 1801(1):1-22. PubMed ID: 19782765 [TBL] [Abstract][Full Text] [Related]
17. Pharmacological strategies in lung cancer-induced cachexia: effects on muscle proteolysis, autophagy, structure, and weakness. Chacon-Cabrera A; Fermoselle C; Urtreger AJ; Mateu-Jimenez M; Diament MJ; de Kier Joffé ED; Sandri M; Barreiro E J Cell Physiol; 2014 Nov; 229(11):1660-72. PubMed ID: 24615622 [TBL] [Abstract][Full Text] [Related]
18. Impaired regeneration: A role for the muscle microenvironment in cancer cachexia. Talbert EE; Guttridge DC Semin Cell Dev Biol; 2016 Jun; 54():82-91. PubMed ID: 26385617 [TBL] [Abstract][Full Text] [Related]
19. Tentative identification of the toxohormones of cancer cachexia: roles of vasopressin, prostaglandin E2 and cachectin-TNF. Siddiqui RA; Williams JF Biochem Int; 1990; 20(4):787-97. PubMed ID: 2353926 [TBL] [Abstract][Full Text] [Related]
20. Early suppression of adipocyte lipid turnover induces immunometabolic modulation in cancer cachexia syndrome. Henriques FS; Sertié RAL; Franco FO; Knobl P; Neves RX; Andreotti S; Lima FB; Guilherme A; Seelaender M; Batista ML FASEB J; 2017 May; 31(5):1976-1986. PubMed ID: 28138038 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]