These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 27443366)

  • 21. Diametral Tensile Strength, Flexural Strength, and Surface Microhardness of Bioactive Bulk Fill Restorative.
    Alrahlah A
    J Contemp Dent Pract; 2018 Jan; 19(1):13-19. PubMed ID: 29358529
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparative Evaluation of Shear Bond Strength of Bioactive Restorative Material, Zirconia Reinforced Glass Ionomer Cement and Conventional Glass Ionomer Cement to the Dentinal Surface of Primary Molars: an
    Nanavati K; Katge F; Chimata VK; Pradhan D; Kamble A; Patil D
    J Dent (Shiraz); 2021 Dec; 22(4):260-266. PubMed ID: 34904122
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A comparison of the diametral tensile strength, the flexural strength, and the compressive strength of two new core materials to a silver alloy-reinforced glass-ionomer material.
    Levartovsky S; Kuyinu E; Georgescu M; Goldstein GR
    J Prosthet Dent; 1994 Nov; 72(5):481-5. PubMed ID: 7844747
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A novel hyperbranched poly(acrylic acid) for improved resin-modified glass-ionomer restoratives.
    Zhao J; Xie D
    Dent Mater; 2011 May; 27(5):478-86. PubMed ID: 21377199
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Developing a novel glass ionomer cement with enhanced mechanical and chemical properties.
    Yu OY; Ge KX; Lung CY; Chu CH
    Dent Mater; 2024 Jul; 40(7):e1-e13. PubMed ID: 38782634
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparative Evaluation of Water Sorption, Solubility, and Microhardness of Zirconia-reinforced Glass Ionomer, Resin-modified Glass Ionomer, and Type IX Glass Ionomer Restorative Materials: An
    Bethapudy DR; Bhat C; Lakade L; Chaudhary S; Kunte S; Patil S
    Int J Clin Pediatr Dent; 2022; 15(2):175-181. PubMed ID: 37457201
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Glass ionomer cements functionalised with a concentrated paste of chlorhexidine hexametaphosphate provides dose-dependent chlorhexidine release over at least 14 months.
    Bellis CA; Nobbs AH; O'Sullivan DJ; Holder JA; Barbour ME
    J Dent; 2016 Feb; 45():53-8. PubMed ID: 26756881
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of E-glass fibers addition on compressive strength, flexural strength, hardness, and solubility of glass ionomer based cement.
    Hamdy TM
    BMC Oral Health; 2024 Jun; 24(1):739. PubMed ID: 38937723
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of Resin-modified Glass Ionomer Cement Dispensing/Mixing Methods on Mechanical Properties.
    Sulaiman TA; Abdulmajeed AA; Altitinchi A; Ahmed SN; Donovan TE
    Oper Dent; 2018; 43(4):E158-E165. PubMed ID: 29570021
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Physico-mechanical properties of a fast-set highly viscous GIC restorative.
    Yap AU; Pek YS; Cheang P
    J Oral Rehabil; 2003 Jan; 30(1):1-8. PubMed ID: 12485377
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The properties of metal-reinforced glass ionomer materials.
    Chung KH
    J Oral Rehabil; 1993 Jan; 20(1):79-87. PubMed ID: 8429426
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparative Evaluation of Compressive Strength and Diametral Tensile Strength of Conventional Glass Ionomer Cement and a Glass Hybrid Glass Ionomer Cement.
    Kunte S; Shah SB; Patil S; Shah P; Patel A; Chaudhary S
    Int J Clin Pediatr Dent; 2022; 15(4):398-401. PubMed ID: 36875971
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evaluation of compressive strength, surface microhardness, solubility and antimicrobial effect of glass ionomer dental cement reinforced with silver doped carbon nanotube fillers.
    Hamdy TM
    BMC Oral Health; 2023 Oct; 23(1):777. PubMed ID: 37872523
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Compressive fatigue limit of four types of dental restorative materials.
    Chen S; Öhman C; Jefferies SR; Gray H; Xia W; Engqvist H
    J Mech Behav Biomed Mater; 2016 Aug; 61():283-289. PubMed ID: 27085845
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hollow glass fibers in reinforcing glass ionomer cements.
    Garoushi S; Vallittu P; Lassila L
    Dent Mater; 2017 Feb; 33(2):e86-e93. PubMed ID: 27836115
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of incorporation of HA/ZrO(2) into glass ionomer cement (GIC).
    Gu YW; Yap AU; Cheang P; Khor KA
    Biomaterials; 2005 Mar; 26(7):713-20. PubMed ID: 15350775
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Diametral and compressive strength of dental core materials.
    Cho GC; Kaneko LM; Donovan TE; White SN
    J Prosthet Dent; 1999 Sep; 82(3):272-6. PubMed ID: 10479251
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of the reinforced cellulose nanocrystals on glass-ionomer cements.
    Menezes-Silva R; de Oliveira BMB; Fernandes PHM; Shimohara LY; Pereira FV; Borges AFS; Buzalaf MAR; Pascotto RC; Sidhu SK; de Lima Navarro MF
    Dent Mater; 2019 Apr; 35(4):564-573. PubMed ID: 30711272
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sol-gel-derived bioactive glass nanoparticle-incorporated glass ionomer cement with or without chitosan for enhanced mechanical and biomineralization properties.
    Kim DA; Lee JH; Jun SK; Kim HW; Eltohamy M; Lee HH
    Dent Mater; 2017 Jul; 33(7):805-817. PubMed ID: 28535954
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In vitro evaluation of five core materials.
    Gu S; Rasimick BJ; Deutsch AS; Musikant BL
    J Prosthodont; 2007; 16(1):25-30. PubMed ID: 17244304
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.