These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 27443483)

  • 1. Profile comparison revealed deviation from structural constraint at the positively selected sites.
    Oda H; Ota M; Toh H
    Biosystems; 2016 Sep; 147():67-77. PubMed ID: 27443483
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improvement in protein functional site prediction by distinguishing structural and functional constraints on protein family evolution using computational design.
    Cheng G; Qian B; Samudrala R; Baker D
    Nucleic Acids Res; 2005; 33(18):5861-7. PubMed ID: 16224101
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Discarding functional residues from the substitution table improves predictions of active sites within three-dimensional structures.
    Gong S; Blundell TL
    PLoS Comput Biol; 2008 Oct; 4(10):e1000179. PubMed ID: 18833291
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selecton 2007: advanced models for detecting positive and purifying selection using a Bayesian inference approach.
    Stern A; Doron-Faigenboim A; Erez E; Martz E; Bacharach E; Pupko T
    Nucleic Acids Res; 2007 Jul; 35(Web Server issue):W506-11. PubMed ID: 17586822
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of deleterious functional effects of amino acid mutations using a library of structure-based function descriptors.
    Herrgard S; Cammer SA; Hoffman BT; Knutson S; Gallina M; Speir JA; Fetrow JS; Baxter SM
    Proteins; 2003 Dec; 53(4):806-16. PubMed ID: 14635123
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of covariation in an SH3 domain sequence alignment: applications in tertiary contact prediction and the design of compensating hydrophobic core substitutions.
    Larson SM; Di Nardo AA; Davidson AR
    J Mol Biol; 2000 Oct; 303(3):433-46. PubMed ID: 11031119
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identifying relevant positions in proteins by Critical Variable Selection.
    Grigolon S; Franz S; Marsili M
    Mol Biosyst; 2016 Jun; 12(7):2147-58. PubMed ID: 26974515
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational prediction of native protein ligand-binding and enzyme active site sequences.
    Chakrabarti R; Klibanov AM; Friesner RA
    Proc Natl Acad Sci U S A; 2005 Jul; 102(29):10153-8. PubMed ID: 15998733
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-dimensional window analysis for detecting positive selection at structural regions of proteins.
    Suzuki Y
    Mol Biol Evol; 2004 Dec; 21(12):2352-9. PubMed ID: 15356273
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of positive selection eliminating effects of structural constraints in hemagglutinin of H3N2 human influenza A virus.
    Suzuki Y
    Infect Genet Evol; 2013 Jun; 16():93-8. PubMed ID: 23403095
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantifying structural and functional restraints on amino acid substitutions in evolution of proteins.
    Chelliah V; Blundell TL
    Biochemistry (Mosc); 2005 Aug; 70(8):835-40. PubMed ID: 16212538
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Correlated Selection on Amino Acid Deletion and Replacement in Mammalian Protein Sequences.
    Zheng Y; Graur D; Azevedo RBR
    J Mol Evol; 2018 Jul; 86(6):365-378. PubMed ID: 29955898
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Context-specific amino acid substitution matrices and their use in the detection of protein homologs.
    Goonesekere NC; Lee B
    Proteins; 2008 May; 71(2):910-9. PubMed ID: 18004781
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single substitutions to closely related amino acids contribute to the functional diversification of an insect-inducible, positively selected plant cystatin.
    Rasoolizadeh A; Goulet MC; Sainsbury F; Cloutier C; Michaud D
    FEBS J; 2016 Apr; 283(7):1323-35. PubMed ID: 26833679
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Active Site-Induced Evolutionary Constraints Follow Fold Polarity Principles in Soluble Globular Enzymes.
    Mayorov A; Dal Peraro M; Abriata LA
    Mol Biol Evol; 2019 Aug; 36(8):1728-1733. PubMed ID: 31004173
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lineage-specific differences in the amino acid substitution process.
    Huzurbazar S; Kolesov G; Massey SE; Harris KC; Churbanov A; Liberles DA
    J Mol Biol; 2010 Mar; 396(5):1410-21. PubMed ID: 20004669
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ADOPS--Automatic Detection Of Positively Selected Sites.
    Reboiro-Jato D; Reboiro-Jato M; Fdez-Riverola F; Vieira CP; Fonseca NA; Vieira J
    J Integr Bioinform; 2012 Jul; 9(3):200. PubMed ID: 22829571
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extensively Parameterized Mutation-Selection Models Reliably Capture Site-Specific Selective Constraint.
    Spielman SJ; Wilke CO
    Mol Biol Evol; 2016 Nov; 33(11):2990-3002. PubMed ID: 27512115
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Statistical potential-based amino acid similarity matrices for aligning distantly related protein sequences.
    Tan YH; Huang H; Kihara D
    Proteins; 2006 Aug; 64(3):587-600. PubMed ID: 16799934
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SWAKK: a web server for detecting positive selection in proteins using a sliding window substitution rate analysis.
    Liang H; Zhou W; Landweber LF
    Nucleic Acids Res; 2006 Jul; 34(Web Server issue):W382-4. PubMed ID: 16845032
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.