BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

425 related articles for article (PubMed ID: 27443743)

  • 1. Absence of 21st century warming on Antarctic Peninsula consistent with natural variability.
    Turner J; Lu H; White I; King JC; Phillips T; Hosking JS; Bracegirdle TJ; Marshall GJ; Mulvaney R; Deb P
    Nature; 2016 Jul; 535(7612):411-5. PubMed ID: 27443743
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Holocene Southern Ocean surface temperature variability west of the Antarctic Peninsula.
    Shevenell AE; Ingalls AE; Domack EW; Kelly C
    Nature; 2011 Feb; 470(7333):250-4. PubMed ID: 21307939
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent Antarctic Peninsula warming relative to Holocene climate and ice-shelf history.
    Mulvaney R; Abram NJ; Hindmarsh RC; Arrowsmith C; Fleet L; Triest J; Sime LC; Alemany O; Foord S
    Nature; 2012 Sep; 489(7414):141-4. PubMed ID: 22914090
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism of sea-ice expansion in the Indian Ocean sector of Antarctica: Insights from satellite observation and model reanalysis.
    Jena B; Kumar A; Ravichandran M; Kern S
    PLoS One; 2018; 13(10):e0203222. PubMed ID: 30281612
    [TBL] [Abstract][Full Text] [Related]  

  • 5. West Antarctic Ice Sheet retreat driven by Holocene warm water incursions.
    Hillenbrand CD; Smith JA; Hodell DA; Greaves M; Poole CR; Kender S; Williams M; Andersen TJ; Jernas PE; Elderfield H; Klages JP; Roberts SJ; Gohl K; Larter RD; Kuhn G
    Nature; 2017 Jul; 547(7661):43-48. PubMed ID: 28682333
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Change in future climate due to Antarctic meltwater.
    Bronselaer B; Winton M; Griffies SM; Hurlin WJ; Rodgers KB; Sergienko OV; Stouffer RJ; Russell JL
    Nature; 2018 Dec; 564(7734):53-58. PubMed ID: 30455421
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The multi-millennial Antarctic commitment to future sea-level rise.
    Golledge NR; Kowalewski DE; Naish TR; Levy RH; Fogwill CJ; Gasson EG
    Nature; 2015 Oct; 526(7573):421-5. PubMed ID: 26469052
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impacts of the north and tropical Atlantic Ocean on the Antarctic Peninsula and sea ice.
    Li X; Holland DM; Gerber EP; Yoo C
    Nature; 2014 Jan; 505(7484):538-42. PubMed ID: 24451542
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Onset of deglacial warming in West Antarctica driven by local orbital forcing.
    WAIS Divide Project Members
    Nature; 2013 Aug; 500(7463):440-4. PubMed ID: 23945585
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Warming of the Antarctic ice-sheet surface since the 1957 International Geophysical Year.
    Steig EJ; Schneider DP; Rutherford SD; Mann ME; Comiso JC; Shindell DT
    Nature; 2009 Jan; 457(7228):459-62. PubMed ID: 19158794
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An atmospheric origin of the multi-decadal bipolar seesaw.
    Wang Z; Zhang X; Guan Z; Sun B; Yang X; Liu C
    Sci Rep; 2015 Mar; 5():8909. PubMed ID: 25752943
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contribution of changes in atmospheric circulation patterns to extreme temperature trends.
    Horton DE; Johnson NC; Singh D; Swain DL; Rajaratnam B; Diffenbaugh NS
    Nature; 2015 Jun; 522(7557):465-9. PubMed ID: 26108856
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Climate change enhances primary production in the western Antarctic Peninsula.
    Moreau S; Mostajir B; Bélanger S; Schloss IR; Vancoppenolle M; Demers S; Ferreyra GA
    Glob Chang Biol; 2015 Jun; 21(6):2191-205. PubMed ID: 25626857
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sea-ice transport driving Southern Ocean salinity and its recent trends.
    Haumann FA; Gruber N; Münnich M; Frenger I; Kern S
    Nature; 2016 Sep; 537(7618):89-92. PubMed ID: 27582222
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ice loss from the East Antarctic Ice Sheet during late Pleistocene interglacials.
    Wilson DJ; Bertram RA; Needham EF; van de Flierdt T; Welsh KJ; McKay RM; Mazumder A; Riesselman CR; Jimenez-Espejo FJ; Escutia C
    Nature; 2018 Sep; 561(7723):383-386. PubMed ID: 30232420
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Initiation and long-term instability of the East Antarctic Ice Sheet.
    Gulick SPS; Shevenell AE; Montelli A; Fernandez R; Smith C; Warny S; Bohaty SM; Sjunneskog C; Leventer A; Frederick B; Blankenship DD
    Nature; 2017 Dec; 552(7684):225-229. PubMed ID: 29239353
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation.
    Shakun JD; Clark PU; He F; Marcott SA; Mix AC; Liu Z; Otto-Bliesner B; Schmittner A; Bard E
    Nature; 2012 Apr; 484(7392):49-54. PubMed ID: 22481357
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Climate change and the marine ecosystem of the western Antarctic Peninsula.
    Clarke A; Murphy EJ; Meredith MP; King JC; Peck LS; Barnes DK; Smith RC
    Philos Trans R Soc Lond B Biol Sci; 2007 Jan; 362(1477):149-66. PubMed ID: 17405211
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Central tropical Pacific convection drives extreme high temperatures and surface melt on the Larsen C Ice Shelf, Antarctic Peninsula.
    Clem KR; Bozkurt D; Kennett D; King JC; Turner J
    Nat Commun; 2022 Jul; 13(1):3906. PubMed ID: 35831281
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ice cores record significant 1940s Antarctic warmth related to tropical climate variability.
    Schneider DP; Steig EJ
    Proc Natl Acad Sci U S A; 2008 Aug; 105(34):12154-8. PubMed ID: 18697932
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.