These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

424 related articles for article (PubMed ID: 27443743)

  • 21. The Springtime Influence of Natural Tropical Pacific Variability on the Surface Climate of the Ross Ice Shelf, West Antarctica: Implications for Ice Shelf Thinning.
    Clem KR; Orr A; Pope JO
    Sci Rep; 2018 Aug; 8(1):11983. PubMed ID: 30097646
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Global change: Interglacial and future sea level.
    Clark PU; Huybers P
    Nature; 2009 Dec; 462(7275):856-7. PubMed ID: 20016585
    [No Abstract]   [Full Text] [Related]  

  • 23. Atmospheric circulation patterns associated with surface air temperature variability trends between the Antarctic Peninsula and South America.
    Carpenedo CB; Viana DR; Parise CK; Aquino FE; Braga RB
    An Acad Bras Cienc; 2023; 95(suppl 3):e20220591. PubMed ID: 37937657
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chapter 1. Impacts of the oceans on climate change.
    Reid PC; Fischer AC; Lewis-Brown E; Meredith MP; Sparrow M; Andersson AJ; Antia A; Bates NR; Bathmann U; Beaugrand G; Brix H; Dye S; Edwards M; Furevik T; Gangstø R; Hátún H; Hopcroft RR; Kendall M; Kasten S; Keeling R; Le Quéré C; Mackenzie FT; Malin G; Mauritzen C; Olafsson J; Paull C; Rignot E; Shimada K; Vogt M; Wallace C; Wang Z; Washington R
    Adv Mar Biol; 2009; 56():1-150. PubMed ID: 19895974
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rapid, climate-driven changes in outlet glaciers on the Pacific coast of East Antarctica.
    Miles BW; Stokes CR; Vieli A; Cox NJ
    Nature; 2013 Aug; 500(7464):563-6. PubMed ID: 23985874
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Synchronous change of atmospheric CO2 and Antarctic temperature during the last deglacial warming.
    Parrenin F; Masson-Delmotte V; Köhler P; Raynaud D; Paillard D; Schwander J; Barbante C; Landais A; Wegner A; Jouzel J
    Science; 2013 Mar; 339(6123):1060-3. PubMed ID: 23449589
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Multidecadal warming of Antarctic waters.
    Schmidtko S; Heywood KJ; Thompson AF; Aoki S
    Science; 2014 Dec; 346(6214):1227-31. PubMed ID: 25477461
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ice-sheet response to oceanic forcing.
    Joughin I; Alley RB; Holland DM
    Science; 2012 Nov; 338(6111):1172-6. PubMed ID: 23197526
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Antarctic ice-sheet loss driven by basal melting of ice shelves.
    Pritchard HD; Ligtenberg SR; Fricker HA; Vaughan DG; van den Broeke MR; Padman L
    Nature; 2012 Apr; 484(7395):502-5. PubMed ID: 22538614
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The extraordinary events of the major, sudden stratospheric warming, the diminutive antarctic ozone hole, and its split in 2002.
    Varotsos C
    Environ Sci Pollut Res Int; 2004; 11(6):405-11. PubMed ID: 15603531
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Antarctic Peninsula warm winters influenced by Tasman Sea temperatures.
    Sato K; Inoue J; Simmonds I; Rudeva I
    Nat Commun; 2021 Mar; 12(1):1497. PubMed ID: 33686073
    [TBL] [Abstract][Full Text] [Related]  

  • 32. First-year sea ice leads to an increase in dimethyl sulfide-induced particle formation in the Antarctic Peninsula.
    Jang E; Park KT; Yoon YJ; Kim K; Gim Y; Chung HY; Lee K; Choi J; Park J; Park SJ; Koo JH; Fernandez RP; Saiz-Lopez A
    Sci Total Environ; 2022 Jan; 803():150002. PubMed ID: 34482143
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Extended ozone depletion and reduced snow and ice cover-Consequences for Antarctic biota.
    Robinson SA; Revell LE; Mackenzie R; Ossola R
    Glob Chang Biol; 2024 Apr; 30(4):e17283. PubMed ID: 38663017
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Response of the East Antarctic Ice Sheet to past and future climate change.
    Stokes CR; Abram NJ; Bentley MJ; Edwards TL; England MH; Foppert A; Jamieson SSR; Jones RS; King MA; Lenaerts JTM; Medley B; Miles BWJ; Paxman GJG; Ritz C; van de Flierdt T; Whitehouse PL
    Nature; 2022 Aug; 608(7922):275-286. PubMed ID: 35948707
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Contribution of Antarctica to past and future sea-level rise.
    DeConto RM; Pollard D
    Nature; 2016 Mar; 531(7596):591-7. PubMed ID: 27029274
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Benthic colonization in newly ice-free soft-bottom areas in an Antarctic fjord.
    Lagger C; Servetto N; Torre L; Sahade R
    PLoS One; 2017; 12(11):e0186756. PubMed ID: 29117262
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Decreased frequency of North Atlantic polar lows associated with future climate warming.
    Zahn M; von Storch H
    Nature; 2010 Sep; 467(7313):309-12. PubMed ID: 20844533
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Southern Ocean warming and its climatic impacts.
    Cai W; Gao L; Luo Y; Li X; Zheng X; Zhang X; Cheng X; Jia F; Purich A; Santoso A; Du Y; Holland DM; Shi JR; Xiang B; Xie SP
    Sci Bull (Beijing); 2023 May; 68(9):946-960. PubMed ID: 37085399
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Change and variability in East antarctic sea ice seasonality, 1979/80-2009/10.
    Massom R; Reid P; Stammerjohn S; Raymond B; Fraser A; Ushio S
    PLoS One; 2013; 8(5):e64756. PubMed ID: 23705008
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Recent global-warming hiatus tied to equatorial Pacific surface cooling.
    Kosaka Y; Xie SP
    Nature; 2013 Sep; 501(7467):403-7. PubMed ID: 23995690
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.