BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 27443911)

  • 1. An anionic defensin from Plutella xylostella with potential activity against Bacillus thuringiensis.
    Xu XX; Zhang YQ; Freed S; Yu J; Gao YF; Wang S; Ouyang LN; Ju WY; Jin FL
    Bull Entomol Res; 2016 Dec; 106(6):790-800. PubMed ID: 27443911
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An immune-responsive PGRP-S1 regulates the expression of antibacterial peptide genes in diamondback moth, Plutella xylostella (L.).
    Zhang Z; Kong J; De Mandal S; Li S; Zheng Z; Jin F; Xu X
    Int J Biol Macromol; 2020 Jan; 142():114-124. PubMed ID: 31593730
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The midgut cadherin-like gene is not associated with resistance to Bacillus thuringiensis toxin Cry1Ac in Plutella xylostella (L.).
    Guo Z; Kang S; Zhu X; Wu Q; Wang S; Xie W; Zhang Y
    J Invertebr Pathol; 2015 Mar; 126():21-30. PubMed ID: 25595643
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A single type of cadherin is involved in Bacillus thuringiensis toxicity in Plutella xylostella.
    Park Y; Herrero S; Kim Y
    Insect Mol Biol; 2015 Dec; 24(6):624-33. PubMed ID: 26331576
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel genetic factors involved in resistance to Bacillus thuringiensis in Plutella xylostella.
    Ayra-Pardo C; Raymond B; Gulzar A; Rodríguez-Cabrera L; Morán-Bertot I; Crickmore N; Wright DJ
    Insect Mol Biol; 2015 Dec; 24(6):589-600. PubMed ID: 26335439
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The first anionic defensin from amphibians.
    Wei L; Che H; Han Y; Lv J; Mu L; Lv L; Wu J; Yang H
    Amino Acids; 2015 Jul; 47(7):1301-8. PubMed ID: 25792112
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Immune responses to Bacillus thuringiensis in the midgut of the diamondback moth, Plutella xylostella.
    Lin J; Yu XQ; Wang Q; Tao X; Li J; Zhang S; Xia X; You M
    Dev Comp Immunol; 2020 Jun; 107():103661. PubMed ID: 32097696
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of the time-concentration-mortality responses of Plutella xylostella larvae to the interaction of Isaria fumosorosea with the insecticides beta-cypermethrin and Bacillus thuringiensis.
    Nian XG; He YR; Lu LH; Zhao R
    Pest Manag Sci; 2015 Feb; 71(2):216-24. PubMed ID: 24668916
    [TBL] [Abstract][Full Text] [Related]  

  • 9. sPLA
    Roy MC; Kim Y
    Arch Insect Biochem Physiol; 2020 Jun; 104(2):e21670. PubMed ID: 32196735
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of alternative Plutella xylostella control by two Isaria fumosorosea conidial formulations - oil-based formulation and wettable powder - combined with Bacillus thuringiensis.
    Nian XG; He YR; Lu LH; Zhao R
    Pest Manag Sci; 2015 Dec; 71(12):1675-84. PubMed ID: 25641869
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tribolium castaneum immune defense genes are differentially expressed in response to Bacillus thuringiensis toxins sharing common receptor molecules and exhibiting disparate toxicity.
    Contreras E; Benito-Jardón M; López-Galiano MJ; Real MD; Rausell C
    Dev Comp Immunol; 2015 Jun; 50(2):139-45. PubMed ID: 25684675
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular cloning and characterization of gloverin from the diamondback moth, Plutella xylostella L. and its interaction with bacterial membrane.
    Xu XX; Jin FL; Wang YS; Freed S; Hu QB; Ren SX
    World J Microbiol Biotechnol; 2015 Oct; 31(10):1529-41. PubMed ID: 26178746
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MicroRNA expression profiling of Plutella xylostella after challenge with B. thuringiensis.
    Li S; Xu X; Zheng Z; Zheng J; Shakeel M; Jin F
    Dev Comp Immunol; 2019 Apr; 93():115-124. PubMed ID: 30582949
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential toxicity of Bacillus thuringiensis strains and their crystal toxins against high-altitude Himalayan populations of diamondback moth, Plutella xylostella L.
    Mohan M; Sushil SN; Selvakumar G; Bhatt JC; Gujar GT; Gupta HS
    Pest Manag Sci; 2009 Jan; 65(1):27-33. PubMed ID: 18785222
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Suppression of diamondback moth (Lepidoptera: Plutellidae) with an entomopathogenic nematode (Rhabditida: Steinernematidae) and Bacillus thuringiensis Berliner.
    Baur ME; Kaya HK; Tabashnik BE; Chilcutt CF
    J Econ Entomol; 1998 Oct; 91(5):1089-95. PubMed ID: 9805498
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Defensin of the zebra mussel (Dreissena polymorpha): molecular structure, in vitro expression, antimicrobial activity, and potential functions.
    Xu W; Faisal M
    Mol Immunol; 2010 Jul; 47(11-12):2138-47. PubMed ID: 20537393
    [TBL] [Abstract][Full Text] [Related]  

  • 17.
    Li S; Xu X; Shakeel M; Xu J; Zheng Z; Zheng J; Yu X; Zhao Q; Jin F
    Front Physiol; 2018; 9():1478. PubMed ID: 30498450
    [No Abstract]   [Full Text] [Related]  

  • 18. Interaction between the predator Podisus nigrispinus (Hemiptera: Pentatomidae) and the entomopathogenic bacteria Bacillus thuringiensis.
    Carvalho VF; Vacari AM; Pomari AF; De Bortoli CP; Ramalho DG; De Bortoli SA
    Environ Entomol; 2012 Dec; 41(6):1454-61. PubMed ID: 23321092
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantifying the reproduction of Bacillus thuringiensis HD1 in cadavers and live larvae of Plutella xylostella.
    Raymond B; Elliot SL; Ellis RJ
    J Invertebr Pathol; 2008 Jul; 98(3):307-13. PubMed ID: 18336832
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A target-specific feeding toxicity of β(1) integrin dsRNA against diamondback moth, Plutella xylostella.
    Mohamed AA; Kim Y
    Arch Insect Biochem Physiol; 2011 Dec; 78(4):216-30. PubMed ID: 22105667
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.