These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 27443926)

  • 1. Tissue-specific gene targeting using CRISPR/Cas9.
    Ablain J; Zon LI
    Methods Cell Biol; 2016; 135():189-202. PubMed ID: 27443926
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome Editing in Zebrafish Using CRISPR-Cas9: Applications for Developmental Toxicology.
    Warner BK; Alder JK; Suli A
    Methods Mol Biol; 2019; 1965():235-250. PubMed ID: 31069679
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CRISPR-based genome editing of zebrafish.
    Sharma P; Sharma BS; Verma RJ
    Prog Mol Biol Transl Sci; 2021; 180():69-84. PubMed ID: 33934838
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CRISPR/Cas9-mediated genome editing in sea urchins.
    Lin CY; Oulhen N; Wessel G; Su YH
    Methods Cell Biol; 2019; 151():305-321. PubMed ID: 30948015
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Clonal analysis of gene loss of function and tissue-specific gene deletion in zebrafish via CRISPR/Cas9 technology.
    De Santis F; Di Donato V; Del Bene F
    Methods Cell Biol; 2016; 135():171-88. PubMed ID: 27443925
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CRISPR/Cas9-Directed Gene Editing for the Generation of Loss-of-Function Mutants in High-Throughput Zebrafish F
    Shankaran SS; Dahlem TJ; Bisgrove BW; Yost HJ; Tristani-Firouzi M
    Curr Protoc Mol Biol; 2017 Jul; 119():31.9.1-31.9.22. PubMed ID: 28678442
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiplex conditional mutagenesis in zebrafish using the CRISPR/Cas system.
    Yin L; Maddison LA; Chen W
    Methods Cell Biol; 2016; 135():3-17. PubMed ID: 27443918
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Rapid Method for Directed Gene Knockout for Screening in G0 Zebrafish.
    Wu RS; Lam II; Clay H; Duong DN; Deo RC; Coughlin SR
    Dev Cell; 2018 Jul; 46(1):112-125.e4. PubMed ID: 29974860
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gene Therapy with CRISPR/Cas9 Coming to Age for HIV Cure.
    Soriano V
    AIDS Rev; 2017; 19(3):167-172. PubMed ID: 29019352
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome engineering through CRISPR/Cas9 technology in the human germline and pluripotent stem cells.
    Vassena R; Heindryckx B; Peco R; Pennings G; Raya A; Sermon K; Veiga A
    Hum Reprod Update; 2016 Jun; 22(4):411-9. PubMed ID: 26932460
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Targeting Specificity of the CRISPR/Cas9 System.
    Tasan I; Zhao H
    ACS Synth Biol; 2017 Sep; 6(9):1609-1613. PubMed ID: 28911233
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TALEN- and CRISPR-enhanced DNA homologous recombination for gene editing in zebrafish.
    Zhang Y; Huang H; Zhang B; Lin S
    Methods Cell Biol; 2016; 135():107-20. PubMed ID: 27443922
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Programmable base editing of zebrafish genome using a modified CRISPR-Cas9 system.
    Zhang Y; Qin W; Lu X; Xu J; Huang H; Bai H; Li S; Lin S
    Nat Commun; 2017 Jul; 8(1):118. PubMed ID: 28740134
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Loss-of-function approaches in comparative physiology: is there a future for knockdown experiments in the era of genome editing?
    Zimmer AM; Pan YK; Chandrapalan T; Kwong RWM; Perry SF
    J Exp Biol; 2019 Apr; 222(Pt 7):. PubMed ID: 30948498
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Toolkit of CRISPR-Based Genome Editing Systems in Drosophila.
    Xu J; Ren X; Sun J; Wang X; Qiao HH; Xu BW; Liu LP; Ni JQ
    J Genet Genomics; 2015 Apr; 42(4):141-9. PubMed ID: 25953352
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Site-Specific Integration of Exogenous Genes Using Genome Editing Technologies in Zebrafish.
    Kawahara A; Hisano Y; Ota S; Taimatsu K
    Int J Mol Sci; 2016 May; 17(5):. PubMed ID: 27187373
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CRISPR/Cas9-based genome engineering of zebrafish using a seamless integration strategy.
    Luo JJ; Bian WP; Liu Y; Huang HY; Yin Q; Yang XJ; Pei DS
    FASEB J; 2018 Sep; 32(9):5132-5142. PubMed ID: 29812974
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Can genetic engineering-based methods for gene function identification be eclipsed by genome editing in plants? A comparison of methodologies.
    Amritha PP; Shah JM
    Mol Genet Genomics; 2021 May; 296(3):485-500. PubMed ID: 33751237
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generation of Cas9 transgenic zebrafish and their application in establishing an ERV-deficient animal model.
    Yang Z; Chen S; Xue S; Li X; Sun Z; Yang Y; Hu X; Geng T; Cui H
    Biotechnol Lett; 2018 Dec; 40(11-12):1507-1518. PubMed ID: 30244429
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The application of the CRISPR-Cas9 genome editing machinery in food and agricultural science: Current status, future perspectives, and associated challenges.
    Eş I; Gavahian M; Marti-Quijal FJ; Lorenzo JM; Mousavi Khaneghah A; Tsatsanis C; Kampranis SC; Barba FJ
    Biotechnol Adv; 2019; 37(3):410-421. PubMed ID: 30779952
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.