These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 27444300)
1. The effect of taurine and β-alanine supplementation on taurine transporter protein and fatigue resistance in skeletal muscle from mdx mice. Horvath DM; Murphy RM; Mollica JP; Hayes A; Goodman CA Amino Acids; 2016 Nov; 48(11):2635-2645. PubMed ID: 27444300 [TBL] [Abstract][Full Text] [Related]
2. Taurine deficiency, synthesis and transport in the mdx mouse model for Duchenne Muscular Dystrophy. Terrill JR; Grounds MD; Arthur PG Int J Biochem Cell Biol; 2015 Sep; 66():141-8. PubMed ID: 26239309 [TBL] [Abstract][Full Text] [Related]
3. Expression patterns of regulatory RNAs, including lncRNAs and tRNAs, during postnatal growth of normal and dystrophic (mdx) mouse muscles, and their response to taurine treatment. Butchart LC; Terrill JR; Rossetti G; White R; Filipovska A; Grounds MD Int J Biochem Cell Biol; 2018 Jun; 99():52-63. PubMed ID: 29578051 [TBL] [Abstract][Full Text] [Related]
4. Mitochondrial content is preserved throughout disease progression in the mdx mouse model of Duchenne muscular dystrophy, regardless of taurine supplementation. Barker RG; Wyckelsma VL; Xu H; Murphy RM Am J Physiol Cell Physiol; 2018 Apr; 314(4):C483-C491. PubMed ID: 29351413 [TBL] [Abstract][Full Text] [Related]
5. Effect of beta-alanine and carnosine supplementation on muscle contractility in mice. Everaert I; Stegen S; Vanheel B; Taes Y; Derave W Med Sci Sports Exerc; 2013 Jan; 45(1):43-51. PubMed ID: 22895378 [TBL] [Abstract][Full Text] [Related]
6. Elevated GLUT4 and glycogenin protein abundance correspond to increased glycogen content in the soleus muscle of mdx mice with no benefit associated with taurine supplementation. Barker RG; Frankish BP; Xu H; Murphy RM Physiol Rep; 2018 Mar; 6(5):. PubMed ID: 29484837 [TBL] [Abstract][Full Text] [Related]
7. Alteration of excitation-contraction coupling mechanism in extensor digitorum longus muscle fibres of dystrophic mdx mouse and potential efficacy of taurine. De Luca A; Pierno S; Liantonio A; Cetrone M; Camerino C; Simonetti S; Papadia F; Camerino DC Br J Pharmacol; 2001 Mar; 132(5):1047-54. PubMed ID: 11226135 [TBL] [Abstract][Full Text] [Related]
8. A long-term treatment with taurine prevents cardiac dysfunction in mdx mice. Mele A; Mantuano P; De Bellis M; Rana F; Sanarica F; Conte E; Morgese MG; Bove M; Rolland JF; Capogrosso RF; Pierno S; Camerino GM; Trabace L; De Luca A Transl Res; 2019 Feb; 204():82-99. PubMed ID: 30347179 [TBL] [Abstract][Full Text] [Related]
9. Enhanced dystrophic progression in mdx mice by exercise and beneficial effects of taurine and insulin-like growth factor-1. De Luca A; Pierno S; Liantonio A; Cetrone M; Camerino C; Fraysse B; Mirabella M; Servidei S; Rüegg UT; Conte Camerino D J Pharmacol Exp Ther; 2003 Jan; 304(1):453-63. PubMed ID: 12490622 [TBL] [Abstract][Full Text] [Related]
10. Effect of taurine on excitation-contraction coupling of extensor digitorum longus muscle of dystrophic mdx mouse. De Luca A; Pierno S; Camerino C; Huxtable RJ; Camerino DC Adv Exp Med Biol; 1998; 442():115-9. PubMed ID: 9635022 [No Abstract] [Full Text] [Related]
12. Increasing taurine intake and taurine synthesis improves skeletal muscle function in the mdx mouse model for Duchenne muscular dystrophy. Terrill JR; Pinniger GJ; Graves JA; Grounds MD; Arthur PG J Physiol; 2016 Jun; 594(11):3095-110. PubMed ID: 26659826 [TBL] [Abstract][Full Text] [Related]
13. Taurine supplementation increases skeletal muscle force production and protects muscle function during and after high-frequency in vitro stimulation. Goodman CA; Horvath D; Stathis C; Mori T; Croft K; Murphy RM; Hayes A J Appl Physiol (1985); 2009 Jul; 107(1):144-54. PubMed ID: 19423840 [TBL] [Abstract][Full Text] [Related]
14. Beneficial effects of voluntary wheel running on the properties of dystrophic mouse muscle. Hayes A; Williams DA J Appl Physiol (1985); 1996 Feb; 80(2):670-9. PubMed ID: 8929614 [TBL] [Abstract][Full Text] [Related]
15. Sarcoplasmic reticulum function in slow- and fast-twitch skeletal muscles from mdx mice. Divet A; Huchet-Cadiou C Pflugers Arch; 2002 Aug; 444(5):634-43. PubMed ID: 12194017 [TBL] [Abstract][Full Text] [Related]
16. Contractile efficiency of dystrophic mdx mouse muscle: in vivo and ex vivo assessment of adaptation to exercise of functional end points. Capogrosso RF; Mantuano P; Cozzoli A; Sanarica F; Massari AM; Conte E; Fonzino A; Giustino A; Rolland JF; Quaranta A; De Bellis M; Camerino GM; Grange RW; De Luca A J Appl Physiol (1985); 2017 Apr; 122(4):828-843. PubMed ID: 28057817 [TBL] [Abstract][Full Text] [Related]
17. Myogenic differentiation induces taurine transporter in association with taurine-mediated cytoprotection in skeletal muscles. Uozumi Y; Ito T; Hoshino Y; Mohri T; Maeda M; Takahashi K; Fujio Y; Azuma J Biochem J; 2006 Mar; 394(Pt 3):699-706. PubMed ID: 16318624 [TBL] [Abstract][Full Text] [Related]
18. Modulation of insulin-like growth factor (IGF)-I and IGF-binding protein interactions enhances skeletal muscle regeneration and ameliorates the dystrophic pathology in mdx mice. Schertzer JD; Gehrig SM; Ryall JG; Lynch GS Am J Pathol; 2007 Oct; 171(4):1180-8. PubMed ID: 17823291 [TBL] [Abstract][Full Text] [Related]