These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

68 related articles for article (PubMed ID: 27444322)

  • 21. Zinc binding modulates the entire folding free energy surface of human Cu,Zn superoxide dismutase.
    Kayatekin C; Zitzewitz JA; Matthews CR
    J Mol Biol; 2008 Dec; 384(2):540-55. PubMed ID: 18840448
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Thermal unfolding studies of cold adapted uracil-DNA N-glycosylase (UNG) from Atlantic cod (Gadus morhua). A comparative study with human UNG.
    Assefa NG; Niiranen L; Willassen NP; Smalås A; Moe E
    Comp Biochem Physiol B Biochem Mol Biol; 2012 Jan; 161(1):60-8. PubMed ID: 21959147
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Superoxide dismutase 1 is positively selected to minimize protein aggregation in great apes.
    Dasmeh P; Kepp KP
    Cell Mol Life Sci; 2017 Aug; 74(16):3023-3037. PubMed ID: 28389720
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structural and denaturation studies of two mutants of a cold adapted superoxide dismutase point to the importance of electrostatic interactions in protein stability.
    Merlino A; Russo Krauss I; Castellano I; Ruocco MR; Capasso A; De Vendittis E; Rossi B; Sica F
    Biochim Biophys Acta; 2014 Mar; 1844(3):632-40. PubMed ID: 24440460
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structure of a superoxide dismutase and implications for copper-ion chelation.
    Yogavel M; Mishra PC; Gill J; Bhardwaj PK; Dutt S; Kumar S; Ahuja PS; Sharma A
    Acta Crystallogr D Biol Crystallogr; 2008 Aug; D64(Pt 8):892-901. PubMed ID: 18645238
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Downregulation of CuZn-superoxide dismutase contributes to beta-adrenergic receptor-mediated oxidative stress in the heart.
    Srivastava S; Chandrasekar B; Gu Y; Luo J; Hamid T; Hill BG; Prabhu SD
    Cardiovasc Res; 2007 Jun; 74(3):445-55. PubMed ID: 17362897
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Relaxed constraint and evolutionary rate variation between basic helix-loop-helix floral anthocyanin regulators in Ipomoea.
    Streisfeld MA; Rausher MD
    Mol Biol Evol; 2007 Dec; 24(12):2816-26. PubMed ID: 17921484
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Equilibrium unfolding of the dimeric SAM domain of MAPKKK Ste11 from the budding yeast: role of the interfacial residues in structural stability and binding.
    Bhunia A; Domadia PN; Xu X; Gingras R; Ni F; Bhattacharjya S
    Biochemistry; 2008 Jan; 47(2):651-9. PubMed ID: 18092817
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Unfolding and folding kinetics of amyotrophic lateral sclerosis-associated mutant Cu,Zn superoxide dismutases.
    Rumfeldt JA; Lepock JR; Meiering EM
    J Mol Biol; 2009 Jan; 385(1):278-98. PubMed ID: 18951903
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A novel 65-mer peptide imitates the synergism of superoxide dismutase and glutathione peroxidase.
    Yan F; Yan G; Lv S; Shen N; Mu Y; Chen T; Gong P; Xu Y; Lv L; Liu J; Shen J; Luo G
    Int J Biochem Cell Biol; 2011 Dec; 43(12):1802-11. PubMed ID: 21911079
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The megavirus chilensis Cu,Zn-superoxide dismutase: the first viral structure of a typical cellular copper chaperone-independent hyperstable dimeric enzyme.
    Lartigue A; Burlat B; Coutard B; Chaspoul F; Claverie JM; Abergel C
    J Virol; 2015 Jan; 89(1):824-32. PubMed ID: 25355875
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Psychrophilic superoxide dismutase from Pseudoalteromonas haloplanktis: biochemical characterization and identification of a highly reactive cysteine residue.
    Castellano I; Di Maro A; Ruocco MR; Chambery A; Parente A; Di Martino MT; Parlato G; Masullo M; De Vendittis E
    Biochimie; 2006 Oct; 88(10):1377-89. PubMed ID: 16713057
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Trajectory Taken by Dimeric Cu/Zn Superoxide Dismutase through the Protein Unfolding and Dissociation Landscape Is Modulated by Salt Bridge Formation.
    McAlary L; Harrison JA; Aquilina JA; Fitzgerald SP; Kelso C; Benesch JLP; Yerbury JJ
    Anal Chem; 2020 Jan; 92(2):1702-1711. PubMed ID: 31854977
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The paradigm that all oxygen-respiring eukaryotes have cytosolic CuZn-superoxide dismutase and that Mn-superoxide dismutase is localized to the mitochondria does not apply to a large group of marine arthropods.
    Brouwer M; Brouwer TH; Grater W; Enghild JJ; Thogersen IB
    Biochemistry; 1997 Oct; 36(43):13381-8. PubMed ID: 9341231
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Antioxidant activities and mRNA expression of superoxide dismutase, catalase, and glutathione peroxidase in normal and preeclamptic placentas.
    Wang Y; Walsh SW
    J Soc Gynecol Investig; 1996; 3(4):179-84. PubMed ID: 8796828
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Stability Effect of Quinary Interactions Reversed by Single Point Mutations.
    Gnutt D; Timr S; Ahlers J; König B; Manderfeld E; Heyden M; Sterpone F; Ebbinghaus S
    J Am Chem Soc; 2019 Mar; 141(11):4660-4669. PubMed ID: 30740972
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cu,Zn superoxide dismutase structure from a microbial pathogen establishes a class with a conserved dimer interface.
    Forest KT; Langford PR; Kroll JS; Getzoff ED
    J Mol Biol; 2000 Feb; 296(1):145-53. PubMed ID: 10656823
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Spectroscopic and molecular modeling studies on the interactions of N-Methylformamide with superoxide dismutase.
    Kalyani D; Jyothi K; Sivaprakasam C; Nachiappan V
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Apr; 124():148-52. PubMed ID: 24473177
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In silico analysis of caprine superoxide dismutase 1 (SOD1) gene.
    Ahmed Khan Z; Mishra C; Jyotiranjan T
    Genomics; 2020 Jan; 112(1):212-217. PubMed ID: 30684533
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cysteinate protonation and water hydrogen bonding at the active-site of a nickel superoxide dismutase metallopeptide-based mimic: implications for the mechanism of superoxide reduction.
    Shearer J; Peck KL; Schmitt JC; Neupane KP
    J Am Chem Soc; 2014 Nov; 136(45):16009-22. PubMed ID: 25322331
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.