BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 27444433)

  • 1. Exploiting racemases.
    Femmer C; Bechtold M; Roberts TM; Panke S
    Appl Microbiol Biotechnol; 2016 Sep; 100(17):7423-36. PubMed ID: 27444433
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The N-Acetyl Amino Acid Racemases (NAAARs); Native and evolved biocatalysts applied to the synthesis of canonical and non-canonical amino acids.
    De Cesare S; Campopiano DJ
    Curr Opin Biotechnol; 2021 Jun; 69():212-220. PubMed ID: 33556834
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Racemization of undesired enantiomers: Immobilization of mandelate racemase and application in a fixed bed reactor.
    Wrzosek K; Rivera MA; Bettenbrock K; Seidel-Morgenstern A
    Biotechnol J; 2016 Mar; 11(4):453-63. PubMed ID: 26773335
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Environmental roles of microbial amino acid racemases.
    Hernández SB; Cava F
    Environ Microbiol; 2016 Jun; 18(6):1673-85. PubMed ID: 26419727
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzyme-assisted physicochemical enantioseparation processes-Part III: Overcoming yield limitations by dynamic kinetic resolution of asparagine via preferential crystallization and enzymatic racemization.
    Würges K; Petrusevska-Seebach K; Elsner MP; Lütz S
    Biotechnol Bioeng; 2009 Dec; 104(6):1235-9. PubMed ID: 19655380
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lipases: Valuable catalysts for dynamic kinetic resolutions.
    de Miranda AS; Miranda LS; de Souza RO
    Biotechnol Adv; 2015; 33(5):372-93. PubMed ID: 25795055
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic resolution and stereoinversion of secondary alcohols by chemo-enzymatic processes.
    Azerad R; Buisson D
    Curr Opin Biotechnol; 2000 Dec; 11(6):565-71. PubMed ID: 11102790
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Emulation of racemase activity by employing a pair of stereocomplementary biocatalysts.
    Gruber CC; Nestl BM; Gross J; Hildebrandt P; Bornscheuer UT; Faber K; Kroutil W
    Chemistry; 2007; 13(29):8271-6. PubMed ID: 17639544
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel D-mandelate dehydrogenase used in three-enzyme cascade reaction for highly efficient synthesis of non-natural chiral amino acids.
    Fan CW; Xu GC; Ma BD; Bai YP; Zhang J; Xu JH
    J Biotechnol; 2015 Feb; 195():67-71. PubMed ID: 25449542
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural insights into the catalysis and substrate specificity of cyanobacterial aspartate racemase McyF.
    Cao DD; Zhang CP; Zhou K; Jiang YL; Tan XF; Xie J; Ren YM; Chen Y; Zhou CZ; Hou WT
    Biochem Biophys Res Commun; 2019 Jul; 514(4):1108-1114. PubMed ID: 31101340
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In Silico Identification for α-Amino-ε-Caprolactam Racemases by Using Information on the Structure and Function Relationship.
    Payoungkiattikun W; Okazaki S; Nakano S; Ina A; H-Kittikun A; Asano Y
    Appl Biochem Biotechnol; 2015 Jul; 176(5):1303-14. PubMed ID: 26206345
    [TBL] [Abstract][Full Text] [Related]  

  • 12. One-Pot Synthesis of Phenylglyoxylic Acid from Racemic Mandelic Acids via Cascade Biocatalysis.
    Tang CD; Ding PJ; Shi HL; Jia YY; Zhou MZ; Yu HL; Xu JH; Yao LG; Kan YC
    J Agric Food Chem; 2019 Mar; 67(10):2946-2953. PubMed ID: 30807132
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reaction mechanism of the mandelate anion racemization catalyzed by mandelate racemase enzyme: a QM/MM molecular dynamics free energy study.
    Prat-Resina X; Gonzalez-Lafont A; Lluch JM
    J Phys Chem B; 2005 Nov; 109(44):21089-101. PubMed ID: 16853732
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Racemization in reverse: evidence that D-amino acid toxicity on Earth is controlled by bacteria with racemases.
    Zhang G; Sun HJ
    PLoS One; 2014; 9(3):e92101. PubMed ID: 24647559
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assay of amino acid racemases.
    Katane M; Sekine M; Homma H
    Methods Mol Biol; 2012; 794():367-79. PubMed ID: 21956577
    [TBL] [Abstract][Full Text] [Related]  

  • 16. N-succinylamino acid racemases: Enzymatic properties and biotechnological applications.
    Martínez-Rodríguez S; Soriano-Maldonado P; Gavira JA
    Biochim Biophys Acta Proteins Proteom; 2020 Apr; 1868(4):140377. PubMed ID: 31982578
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Symmetry and asymmetry in mandelate racemase catalysis.
    Whitman CP; Hegeman GD; Cleland WW; Kenyon GL
    Biochemistry; 1985 Jul; 24(15):3936-42. PubMed ID: 2996586
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catalytic aspects of enzymatic racemization.
    Adams E
    Adv Enzymol Relat Areas Mol Biol; 1976; 44():69-138. PubMed ID: 5862
    [No Abstract]   [Full Text] [Related]  

  • 19. Changes in quaternary structure cause a kinetic asymmetry of glutamate racemase-catalyzed homocysteic acid racemization.
    Mackie J; Kumar H; Bearne SL
    FEBS Lett; 2018 Oct; 592(20):3399-3413. PubMed ID: 30194685
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catalytic mechanism and properties of pyridoxal 5'-phosphate independent racemases: how enzymes alter mismatched acidity and basicity.
    Fischer C; Ahn YC; Vederas JC
    Nat Prod Rep; 2019 Dec; 36(12):1687-1705. PubMed ID: 30994146
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.