These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 27444433)

  • 21. Direct enantio-convergent transformation of racemic substrates without racemization or symmetrization.
    Ito H; Kunii S; Sawamura M
    Nat Chem; 2010 Nov; 2(11):972-6. PubMed ID: 20966955
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Restructuring catalysis in the mandelate pathway.
    Neidhart DC; Howell PL; Petsko GA; Gerlt JA; Kozarich JW; Powers VM; Kenyon GL
    Biochem Soc Symp; 1990; 57():135-41. PubMed ID: 2099737
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enzymatic racemization of alcohols and amines: An approach for bi-enzymatic dynamic kinetic resolution.
    Musa MM
    Chirality; 2020 Feb; 32(2):147-157. PubMed ID: 31756033
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Three Steps, Two Enzymes, One Pot, but a Multitude of Nanocompartments: Combined Cycles of Kinetic Resolutions and Re-racemization with Incompatible Biocatalysts.
    Golombek F; Haumann M; Knoll MSG; Fröba AP; Castiglione K
    ACS Omega; 2021 Nov; 6(43):29192-29200. PubMed ID: 34746608
    [TBL] [Abstract][Full Text] [Related]  

  • 25. D-Amino acid metabolism in bacteria.
    Miyamoto T; Homma H
    J Biochem; 2021 Sep; 170(1):5-13. PubMed ID: 33788945
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The conundrum in enzymatic reactions related to biosynthesis of d-amino acids in bacteria.
    Pollegioni L; Molla G
    FEBS J; 2022 Oct; 289(19):5895-5898. PubMed ID: 35587531
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Carbamoylases: characteristics and applications in biotechnological processes.
    Martínez-Rodríguez S; Martínez-Gómez AI; Rodríguez-Vico F; Clemente-Jiménez JM; Las Heras-Vázquez FJ
    Appl Microbiol Biotechnol; 2010 Jan; 85(3):441-58. PubMed ID: 19830420
    [TBL] [Abstract][Full Text] [Related]  

  • 28. High level and enantioselective production of L-phenylglycine from racemic mandelic acid by engineered Escherichia coli using response surface methodology.
    Tang CD; Shi HL; Jia YY; Li X; Wang LF; Xu JH; Yao LG; Kan YC
    Enzyme Microb Technol; 2020 May; 136():109513. PubMed ID: 32331718
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mandelate racemase and mandelate dehydrogenase coexpressed recombinant Escherichia coli in the synthesis of benzoylformate.
    Li D; Zeng Z; Yang J; Wang P; Jiang L; Feng J; Yang C
    Biosci Biotechnol Biochem; 2013; 77(6):1236-9. PubMed ID: 23748763
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Redefining the minimal substrate tolerance of mandelate racemase. Racemization of trifluorolactate.
    Nagar M; Narmandakh A; Khalak Y; Bearne SL
    Biochemistry; 2011 Oct; 50(41):8846-52. PubMed ID: 21894901
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Asymmetric biocatalysis with microbial enzymes and cells.
    Wohlgemuth R
    Curr Opin Microbiol; 2010 Jun; 13(3):283-92. PubMed ID: 20434391
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A QM/MM study of the racemization of vinylglycolate catalyzed by mandelate racemase enzyme.
    Garcia-Viloca M; González-Lafont A ; Lluch JM
    J Am Chem Soc; 2001 Jan; 123(4):709-21. PubMed ID: 11456585
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Accelerated aging due to enzymatic racemization.
    Poplin L; DeLong R
    Gerontology; 1978; 24(5):365-8. PubMed ID: 658673
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bacterial mandelic acid degradation pathway and its application in biotechnology.
    Wang Q; Geng S; Wang L; Wen Z; Sun X; Huang H
    J Appl Microbiol; 2022 Aug; 133(2):273-286. PubMed ID: 35294082
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Virtual screening of mandelate racemase mutants with enhanced activity based on binding energy in the transition state.
    Gu J; Liu M; Guo F; Xie W; Lu W; Ye L; Chen Z; Yuan S; Yu H
    Enzyme Microb Technol; 2014 Feb; 55():121-7. PubMed ID: 24411454
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enhanced conversion of racemic alpha-arylalanines to (R)-beta-arylalanines by coupled racemase/aminomutase catalysis.
    Cox BM; Bilsborrow JB; Walker KD
    J Org Chem; 2009 Sep; 74(18):6953-9. PubMed ID: 19711925
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enantioselective extraction of unprotected amino acids coupled with racemization.
    Huang H; Jin Y; Shirbhate ME; Kang D; Choi M; Chen Q; Kim Y; Kim SJ; Byun IS; Wang M; Bouffard J; Kim SK; Kim KM
    Nat Commun; 2021 Jan; 12(1):125. PubMed ID: 33402682
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechanism of the reaction catalyzed by mandelate racemase: structure and mechanistic properties of the D270N mutant.
    Schafer SL; Barrett WC; Kallarakal AT; Mitra B; Kozarich JW; Gerlt JA; Clifton JG; Petsko GA; Kenyon GL
    Biochemistry; 1996 May; 35(18):5662-9. PubMed ID: 8639525
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dynamic kinetic resolution of amino acid amide catalyzed by D-aminopeptidase and alpha-amino-epsilon-caprolactam racemase.
    Asano Y; Yamaguchi S
    J Am Chem Soc; 2005 Jun; 127(21):7696-7. PubMed ID: 15913357
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Application of circular dichroism-based assays to racemases and epimerases: Recognition and catalysis of reactions of chiral substrates by mandelate racemase.
    Bearne SL; Hayden JA
    Methods Enzymol; 2023; 685():127-169. PubMed ID: 37245900
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.