BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 27444546)

  • 1. Quantifying implant-associated biofilms: Comparison of microscopic, microbiologic and biochemical methods.
    Doll K; Jongsthaphongpun KL; Stumpp NS; Winkel A; Stiesch M
    J Microbiol Methods; 2016 Nov; 130():61-68. PubMed ID: 27444546
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integration of non-oral bacteria into in vitro oral biofilms.
    Thurnheer T; Belibasakis GN
    Virulence; 2015; 6(3):258-64. PubMed ID: 25483866
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new device for rapid evaluation of biofilm formation potential by bacteria.
    Chavant P; Gaillard-Martinie B; Talon R; Hébraud M; Bernardi T
    J Microbiol Methods; 2007 Mar; 68(3):605-12. PubMed ID: 17218029
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo and in vitro biofilm formation on two different titanium implant surfaces.
    Bürgers R; Gerlach T; Hahnel S; Schwarz F; Handel G; Gosau M
    Clin Oral Implants Res; 2010 Feb; 21(2):156-64. PubMed ID: 19912269
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High in vitro antimicrobial activity of synthetic antimicrobial peptidomimetics against staphylococcal biofilms.
    Flemming K; Klingenberg C; Cavanagh JP; Sletteng M; Stensen W; Svendsen JS; Flaegstad T
    J Antimicrob Chemother; 2009 Jan; 63(1):136-45. PubMed ID: 19010828
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of a high throughput Alamar blue biofilm susceptibility assay to Staphylococcus aureus biofilms.
    Pettit RK; Weber CA; Pettit GR
    Ann Clin Microbiol Antimicrob; 2009 Oct; 8():28. PubMed ID: 19860905
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automating a 96-well microtitre plate model for Staphylococcus aureus biofilms: an approach to screening of natural antimicrobial compounds.
    Sandberg M; Määttänen A; Peltonen J; Vuorela PM; Fallarero A
    Int J Antimicrob Agents; 2008 Sep; 32(3):233-40. PubMed ID: 18640013
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new colorimetric microtitre model for the detection of Staphylococcus aureus biofilms.
    Toté K; Vanden Berghe D; Maes L; Cos P
    Lett Appl Microbiol; 2008 Feb; 46(2):249-54. PubMed ID: 18069978
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Environmental influences on Actinobacillus actinomycetemcomitans biofilm formation.
    Haase EM; Bonstein T; Palmer RJ; Scannapieco FA
    Arch Oral Biol; 2006 Apr; 51(4):299-314. PubMed ID: 16226214
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Susceptibility of Mature
    Zhang S; Wang X; Shi X; Tan H
    Biomed Res Int; 2020; 2020():7473942. PubMed ID: 33062698
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Berberine inhibits Staphylococcus epidermidis adhesion and biofilm formation on the surface of titanium alloy.
    Wang X; Qiu S; Yao X; Tang T; Dai K; Zhu Z
    J Orthop Res; 2009 Nov; 27(11):1487-92. PubMed ID: 19472377
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New quantitative image analysis of staphylococcal biofilms on the surfaces of nontranslucent metallic biomaterials.
    Adachi K; Tsurumoto T; Yonekura A; Nishimura S; Kajiyama S; Hirakata Y; Shindo H
    J Orthop Sci; 2007 Mar; 12(2):178-84. PubMed ID: 17393274
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sonication is superior to scraping for retrieval of bacteria in biofilm on titanium and steel surfaces in vitro.
    Bjerkan G; Witsø E; Bergh K
    Acta Orthop; 2009 Apr; 80(2):245-50. PubMed ID: 19404811
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Colorimetric method for identifying plant essential oil components that affect biofilm formation and structure.
    Niu C; Gilbert ES
    Appl Environ Microbiol; 2004 Dec; 70(12):6951-6. PubMed ID: 15574886
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A combination of assays reveals biomass differences in biofilms formed by Escherichia coli mutants.
    Sule P; Wadhawan T; Carr NJ; Horne SM; Wolfe AJ; Prüss BM
    Lett Appl Microbiol; 2009 Sep; 49(3):299-304. PubMed ID: 19552773
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid methods to assess sanitizing efficacy of benzalkonium chloride to Listeria monocytogenes biofilms.
    Romanova NA; Gawande PV; Brovko LY; Griffiths MW
    J Microbiol Methods; 2007 Dec; 71(3):231-7. PubMed ID: 17928079
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of confocal microscopy to analyze the rate of vancomycin penetration through Staphylococcus aureus biofilms.
    Jefferson KK; Goldmann DA; Pier GB
    Antimicrob Agents Chemother; 2005 Jun; 49(6):2467-73. PubMed ID: 15917548
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immuno-detection of Staphylococcus aureus biofilm on a cochlear implant.
    Kos MI; Stenz L; François P; Guyot JP; Schrenzel J
    Infection; 2009 Oct; 37(5):450-4. PubMed ID: 19280117
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of mouthrinses on Aggregatibacter actinomycetemcomitans biofilms in a hydrodynamic model.
    Sliepen I; Van Essche M; Quirynen M; Teughels W
    Clin Oral Investig; 2010 Jun; 14(3):241-50. PubMed ID: 19462186
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of low-intensity ultrasound upon biofilm structure from confocal scanning laser microscopy observation.
    Qian Z; Stoodley P; Pitt WG
    Biomaterials; 1996 Oct; 17(20):1975-80. PubMed ID: 8894091
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.