These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 27444615)
1. Temporal assessment of nanoparticle accumulation after experimental brain injury: Effect of particle size. Bharadwaj VN; Lifshitz J; Adelson PD; Kodibagkar VD; Stabenfeldt SE Sci Rep; 2016 Jul; 6():29988. PubMed ID: 27444615 [TBL] [Abstract][Full Text] [Related]
2. Blood-brainbarrier disruption dictates nanoparticle accumulation following experimental brain injury. Bharadwaj VN; Rowe RK; Harrison J; Wu C; Anderson TR; Lifshitz J; Adelson PD; Kodibagkar VD; Stabenfeldt SE Nanomedicine; 2018 Oct; 14(7):2155-2166. PubMed ID: 29933022 [TBL] [Abstract][Full Text] [Related]
3. Sex-Dependent Macromolecule and Nanoparticle Delivery in Experimental Brain Injury. Bharadwaj VN; Copeland C; Mathew E; Newbern J; Anderson TR; Lifshitz J; Kodibagkar VD; Stabenfeldt SE Tissue Eng Part A; 2020 Jul; 26(13-14):688-701. PubMed ID: 32697674 [TBL] [Abstract][Full Text] [Related]
4. Traumatic brain injury opens blood-brain barrier to stealth liposomes via an enhanced permeability and retention (EPR)-like effect. Boyd BJ; Galle A; Daglas M; Rosenfeld JV; Medcalf R J Drug Target; 2015; 23(9):847-53. PubMed ID: 26079716 [TBL] [Abstract][Full Text] [Related]
5. Effect of PLGA NP size on efficiency to target traumatic brain injury. Cruz LJ; Stammes MA; Que I; van Beek ER; Knol-Blankevoort VT; Snoeks TJA; Chan A; Kaijzel EL; Löwik CWGM J Control Release; 2016 Feb; 223():31-41. PubMed ID: 26708021 [TBL] [Abstract][Full Text] [Related]
6. Brain-derived neurotrophic factor delivered to the brain using poly (lactide-co-glycolide) nanoparticles improves neurological and cognitive outcome in mice with traumatic brain injury. Khalin I; Alyautdin R; Wong TW; Gnanou J; Kocherga G; Kreuter J Drug Deliv; 2016 Nov; 23(9):3520-3528. PubMed ID: 27278330 [TBL] [Abstract][Full Text] [Related]
7. The blood-brain barrier disruption to circulating proteins in the early period after fluid percussion brain injury in rats. Fukuda K; Tanno H; Okimura Y; Nakamura M; Yamaura A J Neurotrauma; 1995 Jun; 12(3):315-24. PubMed ID: 7473806 [TBL] [Abstract][Full Text] [Related]
8. Surfactants, not size or zeta-potential influence blood-brain barrier passage of polymeric nanoparticles. Voigt N; Henrich-Noack P; Kockentiedt S; Hintz W; Tomas J; Sabel BA Eur J Pharm Biopharm; 2014 May; 87(1):19-29. PubMed ID: 24607790 [TBL] [Abstract][Full Text] [Related]
9. The brain targeting mechanism of Angiopep-conjugated poly(ethylene glycol)-co-poly(ε-caprolactone) nanoparticles. Xin H; Sha X; Jiang X; Chen L; Law K; Gu J; Chen Y; Wang X; Fang X Biomaterials; 2012 Feb; 33(5):1673-81. PubMed ID: 22133551 [TBL] [Abstract][Full Text] [Related]
10. Evaluating differential nanoparticle accumulation and retention kinetics in a mouse model of traumatic brain injury via K Miller HA; Magsam AW; Tarudji AW; Romanova S; Weber L; Gee CC; Madsen GL; Bronich TK; Kievit FM Sci Rep; 2019 Nov; 9(1):16099. PubMed ID: 31695100 [TBL] [Abstract][Full Text] [Related]
11. Delayed increases in microvascular pathology after experimental traumatic brain injury are associated with prolonged inflammation, blood-brain barrier disruption, and progressive white matter damage. Glushakova OY; Johnson D; Hayes RL J Neurotrauma; 2014 Jul; 31(13):1180-93. PubMed ID: 24564198 [TBL] [Abstract][Full Text] [Related]
13. LDLR-mediated peptide-22-conjugated nanoparticles for dual-targeting therapy of brain glioma. Zhang B; Sun X; Mei H; Wang Y; Liao Z; Chen J; Zhang Q; Hu Y; Pang Z; Jiang X Biomaterials; 2013 Dec; 34(36):9171-82. PubMed ID: 24008043 [TBL] [Abstract][Full Text] [Related]
14. Brain delivery property and accelerated blood clearance of cationic albumin conjugated pegylated nanoparticle. Lu W; Wan J; She Z; Jiang X J Control Release; 2007 Mar; 118(1):38-53. PubMed ID: 17240471 [TBL] [Abstract][Full Text] [Related]
15. PLGA Nanoparticles Loaded Cerebrolysin: Studies on Their Preparation and Investigation of the Effect of Storage and Serum Stability with Reference to Traumatic Brain Injury. Ruozi B; Belletti D; Sharma HS; Sharma A; Muresanu DF; Mössler H; Forni F; Vandelli MA; Tosi G Mol Neurobiol; 2015 Oct; 52(2):899-912. PubMed ID: 26108180 [TBL] [Abstract][Full Text] [Related]
16. Neuroprotective effects of citicoline on brain edema and blood-brain barrier breakdown after traumatic brain injury. Başkaya MK; Doğan A; Rao AM; Dempsey RJ J Neurosurg; 2000 Mar; 92(3):448-52. PubMed ID: 10701532 [TBL] [Abstract][Full Text] [Related]
17. In vitro and in vivo studies on the transport of PEGylated silica nanoparticles across the blood-brain barrier. Liu D; Lin B; Shao W; Zhu Z; Ji T; Yang C ACS Appl Mater Interfaces; 2014 Feb; 6(3):2131-6. PubMed ID: 24417514 [TBL] [Abstract][Full Text] [Related]
18. Thrombospondin-1 Gene Deficiency Worsens the Neurological Outcomes of Traumatic Brain Injury in Mice. Cheng C; Yu Z; Zhao S; Liao Z; Xing C; Jiang Y; Yang YG; Whalen MJ; Lo EH; Sun X; Wang X Int J Med Sci; 2017; 14(10):927-936. PubMed ID: 28924363 [No Abstract] [Full Text] [Related]
19. Biodistribution of colloidal gold nanoparticles after intravenous administration: effect of particle size. Sonavane G; Tomoda K; Makino K Colloids Surf B Biointerfaces; 2008 Oct; 66(2):274-80. PubMed ID: 18722754 [TBL] [Abstract][Full Text] [Related]