These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 27444746)

  • 1. Advantage of straight walk instability in turning maneuver of multilegged locomotion: a robotics approach.
    Aoi S; Tanaka T; Fujiki S; Funato T; Senda K; Tsuchiya K
    Sci Rep; 2016 Jul; 6():30199. PubMed ID: 27444746
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Maneuverable and Efficient Locomotion of a Myriapod Robot with Variable Body-Axis Flexibility via Instability and Bifurcation.
    Aoi S; Yabuuchi Y; Morozumi D; Okamoto K; Adachi M; Senda K; Tsuchiya K
    Soft Robot; 2023 Oct; 10(5):1028-1040. PubMed ID: 37231619
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Instability-based mechanism for body undulations in centipede locomotion.
    Aoi S; Egi Y; Tsuchiya K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):012717. PubMed ID: 23410369
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theoretical and experimental study on a compliant flipper-leg during terrestrial locomotion.
    Fang T; Zhou Y; Li S; Xu M; Liang H; Li W; Zhang S
    Bioinspir Biomim; 2016 Aug; 11(5):056005. PubMed ID: 27530372
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Body torsional flexibility effects on stability during trotting and pacing based on a simple analytical model.
    Adachi M; Aoi S; Kamimura T; Tsuchiya K; Matsuno F
    Bioinspir Biomim; 2020 Jul; 15(5):055001. PubMed ID: 32454464
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulation of orthogonal body waves enables high maneuverability in sidewinding locomotion.
    Astley HC; Gong C; Dai J; Travers M; Serrano MM; Vela PA; Choset H; Mendelson JR; Hu DL; Goldman DI
    Proc Natl Acad Sci U S A; 2015 May; 112(19):6200-5. PubMed ID: 25831489
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Decentralized control scheme for myriapod robot inspired by adaptive and resilient centipede locomotion.
    Yasui K; Sakai K; Kano T; Owaki D; Ishiguro A
    PLoS One; 2017; 12(2):e0171421. PubMed ID: 28152103
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Body stiffness in orthogonal directions oppositely affects worm-like robot turning and straight-line locomotion.
    Kandhari A; Huang Y; Daltorio KA; Chiel HJ; Quinn RD
    Bioinspir Biomim; 2018 Jan; 13(2):026003. PubMed ID: 29261099
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integrated Modular Neural Control for Versatile Locomotion and Object Transportation of a Dung Beetle-Like Robot.
    Leung B; Billeschou P; Manoonpong P
    IEEE Trans Cybern; 2024 Apr; 54(4):2062-2075. PubMed ID: 37028343
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Walking is like slithering: A unifying, data-driven view of locomotion.
    Zhao D; Bittner B; Clifton G; Gravish N; Revzen S
    Proc Natl Acad Sci U S A; 2022 Sep; 119(37):e2113222119. PubMed ID: 36067311
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic turning and running of a hexapod robot using a separated and laterally arranged two-leg model.
    Chang IC; Lin PC
    Bioinspir Biomim; 2023 Apr; 18(3):. PubMed ID: 36947883
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A miniature surface tension-driven robot using spatially elliptical moving legs to mimic a water strider's locomotion.
    Yan JH; Zhang XB; Zhao J; Liu GF; Cai HG; Pan QM
    Bioinspir Biomim; 2015 Aug; 10(4):046016. PubMed ID: 26241519
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptive and Energy Efficient Walking in a Hexapod Robot Under Neuromechanical Control and Sensorimotor Learning.
    Xiong X; Worgotter F; Manoonpong P
    IEEE Trans Cybern; 2016 Nov; 46(11):2521-2534. PubMed ID: 26441437
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of tail stiffness on a sprawling quadruped locomotion.
    Buckley J; Chikere N; Ozkan-Aydin Y
    Front Robot AI; 2023; 10():1198749. PubMed ID: 37692530
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Turning in Worm-Like Robots: The Geometry of Slip Elimination Suggests Nonperiodic Waves.
    Kandhari A; Wang Y; Chiel HJ; Daltorio KA
    Soft Robot; 2019 Aug; 6(4):560-577. PubMed ID: 31066633
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the biomimetic design of agile-robot legs.
    Garcia E; Arevalo JC; Muñoz G; Gonzalez-de-Santos P
    Sensors (Basel); 2011; 11(12):11305-34. PubMed ID: 22247667
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-propulsion via slipping: Frictional swimming in multilegged locomotors.
    Chong B; He J; Li S; Erickson E; Diaz K; Wang T; Soto D; Goldman DI
    Proc Natl Acad Sci U S A; 2023 Mar; 120(11):e2213698120. PubMed ID: 36897978
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Many-legged maneuverability: dynamics of turning in hexapods.
    Jindrich DL; Full RJ
    J Exp Biol; 1999 Jun; 202 (Pt 12)():1603-23. PubMed ID: 10333507
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design of hair-like appendages and comparative analysis on their coordination toward steady and efficient swimming.
    Kwak B; Bae J
    Bioinspir Biomim; 2017 May; 12(3):036014. PubMed ID: 28397712
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Maneuvers during legged locomotion.
    Jindrich DL; Qiao M
    Chaos; 2009 Jun; 19(2):026105. PubMed ID: 19566265
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.