These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 27444746)

  • 21. Design of a Biologically Inspired Water-Walking Robot Powered by Artificial Muscle.
    Kim D; Gwon M; Kim B; Ortega-Jimenez VM; Han S; Kang D; Bhamla MS; Koh JS
    Micromachines (Basel); 2022 Apr; 13(4):. PubMed ID: 35457930
    [TBL] [Abstract][Full Text] [Related]  

  • 22. From cineradiography to biorobots: an approach for designing robots to emulate and study animal locomotion.
    Karakasiliotis K; Thandiackal R; Melo K; Horvat T; Mahabadi NK; Tsitkov S; Cabelguen JM; Ijspeert AJ
    J R Soc Interface; 2016 Jun; 13(119):. PubMed ID: 27358276
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hybrid Inspired Research on the Flying-Jumping Locomotion of Locusts Using Robot Counterpart.
    Wei D; Gao T; Li Z; Mo X; Zheng S; Zhou C
    Front Neurorobot; 2019; 13():87. PubMed ID: 31708764
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The behavioural transition from straight to curve walking: kinetics of leg movement parameters and the initiation of turning.
    Dürr V; Ebeling W
    J Exp Biol; 2005 Jun; 208(Pt 12):2237-52. PubMed ID: 15939767
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Self-reconfigurable multilegged robot swarms collectively accomplish challenging terradynamic tasks.
    Ozkan-Aydin Y; Goldman DI
    Sci Robot; 2021 Jul; 6(56):. PubMed ID: 34321347
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Synaptic plasticity in a recurrent neural network for versatile and adaptive behaviors of a walking robot.
    Grinke E; Tetzlaff C; Wörgötter F; Manoonpong P
    Front Neurorobot; 2015; 9():11. PubMed ID: 26528176
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Smooth Transition From Many-Legged to Bipedal Locomotion-Gradual Leg Force Reduction and its Impact on Total Ground Reaction Forces, Body Dynamics and Gait Transitions.
    Weihmann T
    Front Bioeng Biotechnol; 2021; 9():769684. PubMed ID: 35186911
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Anticipatory detection of turning in humans for intuitive control of robotic mobility assistance.
    Farkhatdinov I; Roehri N; Burdet E
    Bioinspir Biomim; 2017 Sep; 12(5):055004. PubMed ID: 28948937
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dynamic Turning of a Soft Quadruped Robot by Changing Phase Difference.
    Tanaka H; Chen TY; Hosoda K
    Front Robot AI; 2021; 8():629523. PubMed ID: 33969002
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Controlling legs for locomotion-insights from robotics and neurobiology.
    Buschmann T; Ewald A; von Twickel A; Büschges A
    Bioinspir Biomim; 2015 Jun; 10(4):041001. PubMed ID: 26119450
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A water-walking robot mimicking the jumping abilities of water striders.
    Yang K; Liu G; Yan J; Wang T; Zhang X; Zhao J
    Bioinspir Biomim; 2016 Oct; 11(6):066002. PubMed ID: 27767015
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A reflexive neural network for dynamic biped walking control.
    Geng T; Porr B; Wörgötter F
    Neural Comput; 2006 May; 18(5):1156-96. PubMed ID: 16595061
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Morphological computation of multi-gaited robot locomotion based on free vibration.
    Reis M; Yu X; Maheshwari N; Iida F
    Artif Life; 2013; 19(1):97-114. PubMed ID: 23186346
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A bipedal walking robot that can fly, slackline, and skateboard.
    Kim K; Spieler P; Lupu ES; Ramezani A; Chung SJ
    Sci Robot; 2021 Oct; 6(59):eabf8136. PubMed ID: 34613821
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Kinematics and the implementation of an elephant's trunk manipulator and other continuum style robots.
    Hannan MW; Walker ID
    J Robot Syst; 2003 Feb; 20(2):45-63. PubMed ID: 14983840
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Adaptive Centipede Walking via Synergetic Coupling Between Decentralized Control and Flexible Body Dynamics.
    Yasui K; Takano S; Kano T; Ishiguro A
    Front Robot AI; 2022; 9():797566. PubMed ID: 35450166
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Physical human-robot interaction of an active pelvis orthosis: toward ergonomic assessment of wearable robots.
    d'Elia N; Vanetti F; Cempini M; Pasquini G; Parri A; Rabuffetti M; Ferrarin M; Molino Lova R; Vitiello N
    J Neuroeng Rehabil; 2017 Apr; 14(1):29. PubMed ID: 28410594
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fully decentralized control of a soft-bodied robot inspired by true slime mold.
    Umedachi T; Takeda K; Nakagaki T; Kobayashi R; Ishiguro A
    Biol Cybern; 2010 Mar; 102(3):261-9. PubMed ID: 20204398
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Small-scale soft-bodied robot with multimodal locomotion.
    Hu W; Lum GZ; Mastrangeli M; Sitti M
    Nature; 2018 Feb; 554(7690):81-85. PubMed ID: 29364873
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A simple running model with rolling contact and its role as a template for dynamic locomotion on a hexapod robot.
    Huang KJ; Huang CK; Lin PC
    Bioinspir Biomim; 2014 Oct; 9(4):046004. PubMed ID: 25291720
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.