These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 27444845)

  • 1. Case study on prediction of remaining methane potential of landfilled municipal solid waste by statistical analysis of waste composition data.
    Sel İ; Çakmakcı M; Özkaya B; Suphi Altan H
    Waste Manag; 2016 Oct; 56():310-7. PubMed ID: 27444845
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimating methane emissions from landfills based on rainfall, ambient temperature, and waste composition: The CLEEN model.
    Karanjekar RV; Bhatt A; Altouqui S; Jangikhatoonabad N; Durai V; Sattler ML; Hossain MD; Chen V
    Waste Manag; 2015 Dec; 46():389-98. PubMed ID: 26346020
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantification of parameters influencing methane generation due to biodegradation of municipal solid waste in landfills and laboratory experiments.
    Fei X; Zekkos D; Raskin L
    Waste Manag; 2016 Sep; 55():276-87. PubMed ID: 26525969
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Compositional analysis of excavated landfill samples and the determination of residual biogas potential of the organic fraction.
    García J; Davies S; Villa R; Gomes DM; Coulon F; Wagland ST
    Waste Manag; 2016 Sep; 55():336-44. PubMed ID: 27290632
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Compositional and physicochemical changes in waste materials and biogas production across 7 landfill sites in UK.
    Frank RR; Cipullo S; Garcia J; Davies S; Wagland ST; Villa R; Trois C; Coulon F
    Waste Manag; 2017 May; 63():11-17. PubMed ID: 27577751
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Translating landfill methane generation parameters among first-order decay models.
    Krause MJ; Chickering GW; Townsend TG
    J Air Waste Manag Assoc; 2016 Nov; 66(11):1084-1097. PubMed ID: 27332778
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluating the biochemical methane potential (BMP) of low-organic waste at Danish landfills.
    Mou Z; Scheutz C; Kjeldsen P
    Waste Manag; 2014 Nov; 34(11):2251-9. PubMed ID: 25106120
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Towards developing a representative biochemical methane potential (BMP) assay for landfilled municipal solid waste - A review.
    Pearse LF; Hettiaratchi JP; Kumar S
    Bioresour Technol; 2018 Apr; 254():312-324. PubMed ID: 29395741
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of as-discarded methane potential in residential and commercial municipal solid waste.
    Chickering GW; Krause MJ; Townsend TG
    Waste Manag; 2018 Jun; 76():82-89. PubMed ID: 29567267
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantification of landfill methane using modified Intergovernmental Panel on Climate Change's waste model and error function analysis.
    Govindan SS; Agamuthu P
    Waste Manag Res; 2014 Oct; 32(10):1005-14. PubMed ID: 25323145
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation and application of site-specific data to revise the first-order decay model for estimating landfill gas generation and emissions at Danish landfills.
    Mou Z; Scheutz C; Kjeldsen P
    J Air Waste Manag Assoc; 2015 Jun; 65(6):686-98. PubMed ID: 25976482
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of correction factors for landfill gas emission model suiting Indian condition to predict methane emission from landfills.
    Sil A; Kumar S; Wong JW
    Bioresour Technol; 2014 Sep; 168():97-9. PubMed ID: 24685512
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stable isotope signatures for characterising the biological stability of landfilled municipal solid waste.
    Wimmer B; Hrad M; Huber-Humer M; Watzinger A; Wyhlidal S; Reichenauer TG
    Waste Manag; 2013 Oct; 33(10):2083-90. PubMed ID: 23540355
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Greenhouse gas emissions from solid waste in Beijing: The rising trend and the mitigation effects by management improvements.
    Yu Y; Zhang W
    Waste Manag Res; 2016 Apr; 34(4):368-77. PubMed ID: 26873911
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using multivariate regression modeling for sampling and predicting chemical characteristics of mixed waste in old landfills.
    Brandstätter C; Laner D; Prantl R; Fellner J
    Waste Manag; 2014 Dec; 34(12):2537-47. PubMed ID: 25218084
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of fine fraction mined from two Finnish landfills.
    Mönkäre TJ; Palmroth MR; Rintala JA
    Waste Manag; 2016 Jan; 47(Pt A):34-9. PubMed ID: 25817722
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A batch assay to measure microbial hydrogen sulfide production from sulfur-containing solid wastes.
    Sun M; Sun W; Barlaz MA
    Sci Total Environ; 2016 May; 551-552():23-31. PubMed ID: 26874757
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Methane and leachate pollutant emission potential from various fractions of municipal solid waste (MSW): effects of source separation and aerobic treatment.
    Jokela JP; Kettunen RH; Rintala JA
    Waste Manag Res; 2002 Oct; 20(5):424-33. PubMed ID: 12498479
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of the age of landfill gas methane in landfill gas-natural gas mixtures using co-occurring constituents.
    Kerfoot HB; Hagedorn B; Verwiel M
    Environ Sci Process Impacts; 2013 Jun; 15(6):1153-61. PubMed ID: 23660592
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemical composition and methane potential of commercial food wastes.
    Lopez VM; De la Cruz FB; Barlaz MA
    Waste Manag; 2016 Oct; 56():477-90. PubMed ID: 27506286
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.