These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
99 related articles for article (PubMed ID: 27444845)
21. Characterization of selected municipal solid waste components to estimate their biodegradability. Bayard R; Benbelkacem H; Gourdon R; Buffière P J Environ Manage; 2018 Jun; 216():4-12. PubMed ID: 28506668 [TBL] [Abstract][Full Text] [Related]
22. Mini-review of the geotechnical parameters of municipal solid waste: Mechanical and biological pre-treated versus raw untreated waste. Petrovic I Waste Manag Res; 2016 Sep; 34(9):840-50. PubMed ID: 27207770 [TBL] [Abstract][Full Text] [Related]
23. Effect of rainfall on the diurnal variations of CH₄, CO₂, and N₂O fluxes from a municipal solid waste landfill. Zhang H; Yan X; Cai Z; Zhang Y Sci Total Environ; 2013 Jan; 442():73-6. PubMed ID: 23178766 [TBL] [Abstract][Full Text] [Related]
24. Study on detecting leachate leakage of municipal solid waste landfill site. Liu J; Cao X; Ai Y; Zhou D; Han Q Waste Manag Res; 2015 Jun; 33(6):588-92. PubMed ID: 25911065 [TBL] [Abstract][Full Text] [Related]
25. Application of stability indicators for the assessment of the degradation of residual household waste before landfilling. Chantou T; Feuillade G; Mausset D; Matejka G Waste Manag Res; 2016 Dec; 34(12):1283-1291. PubMed ID: 27895285 [TBL] [Abstract][Full Text] [Related]
26. Municipal solid waste management in Tehran: Changes during the last 5 years. Malmir T; Tojo Y Waste Manag Res; 2016 May; 34(5):449-56. PubMed ID: 26922086 [TBL] [Abstract][Full Text] [Related]
27. Assessing the performance of gas collection systems in select Chinese landfills according to the LandGEM model: drawbacks and potential direction. Sun Y; Yue D; Li R; Yang T; Liu S Environ Technol; 2015; 36(23):2912-8. PubMed ID: 26510610 [TBL] [Abstract][Full Text] [Related]
28. Impact assessment of intermediate soil cover on landfill stabilization by characterizing landfilled municipal solid waste. Qi G; Yue D; Liu J; Li R; Shi X; He L; Guo J; Miao H; Nie Y J Environ Manage; 2013 Oct; 128():259-65. PubMed ID: 23764507 [TBL] [Abstract][Full Text] [Related]
29. Evaluation and modeling of biochemical methane potential (BMP) of landfilled solid waste: a pilot scale study. Bilgili MS; Demir A; Varank G Bioresour Technol; 2009 Nov; 100(21):4976-80. PubMed ID: 19553105 [TBL] [Abstract][Full Text] [Related]
30. Determination of first-order landfill gas modeling parameters and uncertainties. Amini HR; Reinhart DR; Mackie KR Waste Manag; 2012 Feb; 32(2):305-16. PubMed ID: 22000722 [TBL] [Abstract][Full Text] [Related]
31. Parameter determination of a compression model for landfilled municipal solid waste: an experimental study. Xu XB; Zhan TL; Chen YM; Guo QG Waste Manag Res; 2015 Feb; 33(2):199-210. PubMed ID: 25649408 [TBL] [Abstract][Full Text] [Related]
32. Environmental impact of rejected materials generated in organic fraction of municipal solid waste anaerobic digestion plants: Comparison of wet and dry process layout. Colazo AB; Sánchez A; Font X; Colón J Waste Manag; 2015 Sep; 43():84-97. PubMed ID: 26123979 [TBL] [Abstract][Full Text] [Related]
33. Characterization of temporal variations in landfill gas components inside an open solid waste dump site in Sri Lanka. Nagamori M; Mowjood MI; Watanabe Y; Isobe Y; Ishigaki T; Kawamoto K J Air Waste Manag Assoc; 2016 Dec; 66(12):1257-1267. PubMed ID: 27575846 [TBL] [Abstract][Full Text] [Related]
34. Assessing the environmental sustainability of energy recovery from municipal solid waste in the UK. Jeswani HK; Azapagic A Waste Manag; 2016 Apr; 50():346-63. PubMed ID: 26906085 [TBL] [Abstract][Full Text] [Related]
35. Estimation of methane emission rate changes using age-defined waste in a landfill site. Ishii K; Furuichi T Waste Manag; 2013 Sep; 33(9):1861-9. PubMed ID: 23786989 [TBL] [Abstract][Full Text] [Related]
36. [On-site measurement of landfill gas yield and verification of IPCC model]. Luo YX; Wang W; Gao XB Huan Jing Ke Xue; 2009 Nov; 30(11):3427-31. PubMed ID: 20063766 [TBL] [Abstract][Full Text] [Related]
37. Characterisation of excavated fine fraction and waste composition from a Swedish landfill. Jani Y; Kaczala F; Marchand C; Hogland M; Kriipsalu M; Hogland W; Kihl A Waste Manag Res; 2016 Dec; 34(12):1292-1299. PubMed ID: 27742875 [TBL] [Abstract][Full Text] [Related]
38. Characterisation of the biochemical methane potential (BMP) of individual material fractions in Danish source-separated organic household waste. Naroznova I; Møller J; Scheutz C Waste Manag; 2016 Apr; 50():39-48. PubMed ID: 26878771 [TBL] [Abstract][Full Text] [Related]
39. Estimation of microbial methane generation and oxidation rates in the municipal solid waste landfill of Kaluga city, Russia. Zyakun AM; Muravyev AI; Baskunov BP; Laurinavichius KS; Zakharchenko VN; Peshenko VP; Lykov IN; Shestakova GA Isotopes Environ Health Stud; 2010 Mar; 46(1):78-90. PubMed ID: 20229386 [TBL] [Abstract][Full Text] [Related]
40. Effect of quantity and composition of waste on the prediction of annual methane potential from landfills. Cho HS; Moon HS; Kim JY Bioresour Technol; 2012 Apr; 109():86-92. PubMed ID: 22300637 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]