BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 27444864)

  • 1. The Application of Clinical Lithotripter Shock Waves to RNA Nucleotide Delivery to Cells.
    Nwokeoha S; Carlisle R; Cleveland RO
    Ultrasound Med Biol; 2016 Oct; 42(10):2478-92. PubMed ID: 27444864
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combined shock-wave and immunogene therapy of mouse melanoma and renal carcinoma tumors.
    Song J; Tata D; Li L; Taylor J; Bao S; Miller DL
    Ultrasound Med Biol; 2002 Jul; 28(7):957-64. PubMed ID: 12208340
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo transfection of melanoma cells by lithotripter shock waves.
    Bao S; Thrall BD; Gies RA; Miller DL
    Cancer Res; 1998 Jan; 58(2):219-21. PubMed ID: 9443395
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lithotripter shock waves with cavitation nucleation agents produce tumor growth reduction and gene transfer in vivo.
    Miller DL; Song J
    Ultrasound Med Biol; 2002 Oct; 28(10):1343-8. PubMed ID: 12467861
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recombinant adeno-associated virus-, polyethylenimine/plasmid- and lipofectamine/carboxyfluorescein-labeled small interfering RNA-based transfection in retinal pigment epithelial cells with ultrasound and/or SonoVue.
    Li H; Wan C; Li F
    Mol Med Rep; 2015 May; 11(5):3609-14. PubMed ID: 25607376
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Method for efficient transfection of in vitro-transcribed mRNA into SK-N-AS and HEK293 cells: difference in the toxicity of nuclear EGFP compared to cytoplasmic EGFP.
    Ejeskär K; Fransson S; Zaibak F; Ioannou PA
    Int J Mol Med; 2006 Jun; 17(6):1011-6. PubMed ID: 16685409
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Silencing Bag-1 gene via magnetic gold nanoparticle-delivered siRNA plasmid for colorectal cancer therapy in vivo and in vitro.
    Huang W; Liu Z; Zhou G; Ling J; Tian A; Sun N
    Tumour Biol; 2016 Aug; 37(8):10365-74. PubMed ID: 26846101
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Independent assessment of a wide-focus, low-pressure electromagnetic lithotripter: absence of renal bioeffects in the pig.
    Evan AP; McAteer JA; Connors BA; Pishchalnikov YA; Handa RK; Blomgren P; Willis LR; Williams JC; Lingeman JE; Gao S
    BJU Int; 2008 Feb; 101(3):382-8. PubMed ID: 17922871
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel mechanism of gene transfection by low-energy shock wave.
    Ha CH; Lee SC; Kim S; Chung J; Bae H; Kwon K
    Sci Rep; 2015 Aug; 5():12843. PubMed ID: 26243452
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shock Wave-Induced Damage and Poration in Eukaryotic Cell Membranes.
    López-Marín LM; Millán-Chiu BE; Castaño-González K; Aceves C; Fernández F; Varela-Echavarría A; Loske AM
    J Membr Biol; 2017 Feb; 250(1):41-52. PubMed ID: 27550074
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extracorporeal shock waves stimulate frog sciatic nerves indirectly via a cavitation-mediated mechanism.
    Schelling G; Delius M; Gschwender M; Grafe P; Gambihler S
    Biophys J; 1994 Jan; 66(1):133-40. PubMed ID: 8130332
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dual-head lithotripsy in synchronous mode: acute effect on renal function and morphology in the pig.
    Handa RK; McAteer JA; Willis LR; Pishchalnikov YA; Connors BA; Ying J; Lingeman JE; Evan AP
    BJU Int; 2007 May; 99(5):1134-42. PubMed ID: 17309558
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A study of the suppressive effect on human pancreatic adenocarcinoma cell proliferation and angiogenesis by stable plasmid-based siRNA silencing of c-Src gene expression.
    Zhao X; Li DC; Zhao H; Li Z; Wang JX; Zhu DM; Zhou J; Cen JN
    Oncol Rep; 2012 Mar; 27(3):628-36. PubMed ID: 22200682
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Use of the real-time RT-PCR method for investigation of small stable RNA expression level in human epidermoid carcinoma cells A431].
    Nikitina TV; Nazarova NIu; Tishchenko LI; Tuohimaa P; Sedova VM
    Tsitologiia; 2003; 45(4):392-402. PubMed ID: 14520871
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrasound and microbubble-targeted delivery of small interfering RNA into primary endothelial cells is more effective than delivery of plasmid DNA.
    Juffermans LJ; Meijering BD; Henning RH; Deelman LE
    Ultrasound Med Biol; 2014 Mar; 40(3):532-40. PubMed ID: 24361223
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrasonic enhancement of gene transfection in murine melanoma tumors.
    Miller DL; Bao S; Gies RA; Thrall BD
    Ultrasound Med Biol; 1999 Nov; 25(9):1425-30. PubMed ID: 10626630
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-cell mRNA transfection studies: delivery, kinetics and statistics by numbers.
    Leonhardt C; Schwake G; Stögbauer TR; Rappl S; Kuhr JT; Ligon TS; Rädler JO
    Nanomedicine; 2014 May; 10(4):679-88. PubMed ID: 24333584
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantification of cellular and nuclear uptake rates of polymeric gene delivery nanoparticles and DNA plasmids via flow cytometry.
    Bishop CJ; Majewski RL; Guiriba TR; Wilson DR; Bhise NS; Quiñones-Hinojosa A; Green JJ
    Acta Biomater; 2016 Jun; 37():120-30. PubMed ID: 27019146
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Altered neutrophil permeability following shock wave exposure in vitro.
    Holmes RP; Yeaman LD; Taylor RG; McCullough DL
    J Urol; 1992 Mar; 147(3):733-7. PubMed ID: 1538473
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preclinical evaluation of cyclin dependent kinase 11 and casein kinase 2 survival kinases as RNA interference targets for triple negative breast cancer therapy.
    Kren BT; Unger GM; Abedin MJ; Vogel RI; Henzler CM; Ahmed K; Trembley JH
    Breast Cancer Res; 2015; 17():19. PubMed ID: 25837326
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.