BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 27444864)

  • 21. A comparison of shock wave and sinusoidal-focused ultrasound-induced localized transfection of HeLa cells.
    Huber PE; Jenne J; Debus J; Wannenmacher MF; Pfisterer P
    Ultrasound Med Biol; 1999 Nov; 25(9):1451-7. PubMed ID: 10626634
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The in vitro and in vivo effects of extracorporeal shock waves on malignant cells.
    Randazzo RF; Chaussy CG; Fuchs GJ; Bhuta SM; Lovrekovich H; deKernion JB
    Urol Res; 1988; 16(6):419-26. PubMed ID: 3232275
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Renal injury during shock wave lithotripsy is significantly reduced by slowing the rate of shock wave delivery.
    Evan AP; McAteer JA; Connors BA; Blomgren PM; Lingeman JE
    BJU Int; 2007 Sep; 100(3):624-7; discussion 627-8. PubMed ID: 17550415
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In vitro transfection of human bladder cancer cells by acoustic energy.
    Schaaf A; Langbein S; Knoll T; Alken P; Michel MS
    Anticancer Res; 2003; 23(6C):4871-5. PubMed ID: 14981938
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Delivery of tumor-derived RNA for the induction of cytotoxic T-lymphocytes.
    Grünebach F; Müller MR; Nencioni A; Brossart P
    Gene Ther; 2003 Mar; 10(5):367-74. PubMed ID: 12601391
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Quantitative ultrasonic naked gene delivery and the effect control].
    Wang W; Sun WH; Bian ZZ; Zhou QW; Miao YL
    Space Med Med Eng (Beijing); 2005 Aug; 18(4):271-5. PubMed ID: 16224851
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Acoustic Cavitation-Mediated Delivery of Small Interfering Ribonucleic Acids with Phase-Shift Nano-Emulsions.
    Burgess MT; Porter TM
    Ultrasound Med Biol; 2015 Aug; 41(8):2191-201. PubMed ID: 25979417
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Streptolysin-O reversible permeabilisation is an effective method to transfect siRNAs into myeloma cells.
    Brito JL; Davies FE; Gonzalez D; Morgan GJ
    J Immunol Methods; 2008 Apr; 333(1-2):147-55. PubMed ID: 18299137
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An efficient transfection method for mouse embryonic stem cells.
    Ko BS; Chang TC; Shyue SK; Chen YC; Liou JY
    Gene Ther; 2009 Jan; 16(1):154-8. PubMed ID: 18668145
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Suppression of growth of pancreatic cancer cell and expression of vascular endothelial growth factor by gene silencing with RNA interference.
    Wang J; Shi YQ; Yi J; Ye S; Wang LM; Xu YP; He M; Kong XM
    J Dig Dis; 2008 Nov; 9(4):228-37. PubMed ID: 18959596
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparative analysis of polymers for short interfering RNA delivery in vascular smooth muscle cells.
    Bools LM; Fisher RK; Grandas OH; Kirkpatrick SS; Arnold JD; Goldman MH; Freeman MB; Mountain DJ
    J Surg Res; 2015 Nov; 199(1):266-73. PubMed ID: 26272685
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A novel approach to quantitative ultrasonic naked gene delivery and its non-invasive assessment.
    Wei W; Zhengzhong B; Yongjie W; Lafeng Y; Yalin M
    Ultrasonics; 2004 Dec; 43(2):69-77. PubMed ID: 15530980
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nonviral pulmonary delivery of siRNA.
    Merkel OM; Kissel T
    Acc Chem Res; 2012 Jul; 45(7):961-70. PubMed ID: 21905687
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Vascular endothelial growth factor-C siRNA delivered via calcium carbonate nanoparticle effectively inhibits lymphangiogenesis and growth of colorectal cancer in vivo.
    He XW; Liu T; Xiao Y; Feng YL; Cheng DJ; Tingting G; Zhang L; Zhang Y; Chen YX; Tingting G; Zhang L
    Cancer Biother Radiopharm; 2009 Apr; 24(2):249-59. PubMed ID: 19409048
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Light-controlled modulation of gene expression using polyamidoamine formulations.
    Bøe SL; Jørgensen JA; Longva AS; Lavelle T; Sæbøe-Larssen S; Hovig E
    Nucleic Acid Ther; 2013 Apr; 23(2):160-5. PubMed ID: 23530684
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Shock waves and DNA-cationic lipid assemblies: a synergistic approach to express exogenous genes in human cells.
    Millán-Chiu B; Camacho G; Varela-Echavarría A; Tamariz E; Fernández F; López-Marín LM; Loske AM
    Ultrasound Med Biol; 2014 Jul; 40(7):1599-608. PubMed ID: 24642223
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Increased VEGF levels induced by anti-VEGF treatment are independent of tumor burden in colorectal carcinomas in mice.
    Schmitz V; Vilanueva H; Raskopf E; Hilbert T; Barajas M; Dzienisowicz C; Gorschlüter M; Strehl J; Rabe C; Sauerbruch T; Prieto J; Caselmann WH; Qian C
    Gene Ther; 2006 Aug; 13(16):1198-205. PubMed ID: 16617302
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Non-Viral, Lipid-Mediated DNA and mRNA Gene Therapy of the Central Nervous System (CNS): Chemical-Based Transfection.
    Hecker JG
    Methods Mol Biol; 2016; 1382():307-24. PubMed ID: 26611597
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nonviral genetic modification mediates effective transgene expression and functional RNA interference in human mesenchymal stem cells.
    Hoelters J; Ciccarella M; Drechsel M; Geissler C; Gülkan H; Böcker W; Schieker M; Jochum M; Neth P
    J Gene Med; 2005 Jun; 7(6):718-28. PubMed ID: 15712343
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The effects of radial shock waves on gene transfer in rabbit chondrocytes in vitro.
    Murata R; Nakagawa K; Ohtori S; Ochiai N; Arai M; Saisu T; Sasho T; Takahashi K; Moriya H
    Osteoarthritis Cartilage; 2007 Nov; 15(11):1275-82. PubMed ID: 17537650
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.