These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

383 related articles for article (PubMed ID: 27444890)

  • 1. Boosting the discriminatory power of sparse survival models via optimization of the concordance index and stability selection.
    Mayr A; Hofner B; Schmid M
    BMC Bioinformatics; 2016 Jul; 17():288. PubMed ID: 27444890
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Boosting the concordance index for survival data--a unified framework to derive and evaluate biomarker combinations.
    Mayr A; Schmid M
    PLoS One; 2014; 9(1):e84483. PubMed ID: 24400093
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Randomized boosting with multivariable base-learners for high-dimensional variable selection and prediction.
    Staerk C; Mayr A
    BMC Bioinformatics; 2021 Sep; 22(1):441. PubMed ID: 34530737
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controlling false discoveries in high-dimensional situations: boosting with stability selection.
    Hofner B; Boccuto L; Göker M
    BMC Bioinformatics; 2015 May; 16():144. PubMed ID: 25943565
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NCC-AUC: an AUC optimization method to identify multi-biomarker panel for cancer prognosis from genomic and clinical data.
    Zou M; Liu Z; Zhang XS; Wang Y
    Bioinformatics; 2015 Oct; 31(20):3330-8. PubMed ID: 26092859
    [TBL] [Abstract][Full Text] [Related]  

  • 6. L1 penalized estimation in the Cox proportional hazards model.
    Goeman JJ
    Biom J; 2010 Feb; 52(1):70-84. PubMed ID: 19937997
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-omics facilitated variable selection in Cox-regression model for cancer prognosis prediction.
    Liu C; Wang X; Genchev GZ; Lu H
    Methods; 2017 Jul; 124():100-107. PubMed ID: 28627406
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-dimensional Cox models: the choice of penalty as part of the model building process.
    Benner A; Zucknick M; Hielscher T; Ittrich C; Mansmann U
    Biom J; 2010 Feb; 52(1):50-69. PubMed ID: 20166132
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toward the precision breast cancer survival prediction utilizing combined whole genome-wide expression and somatic mutation analysis.
    Zhang Y; Yang W; Li D; Yang JY; Guan R; Yang MQ
    BMC Med Genomics; 2018 Nov; 11(Suppl 5):104. PubMed ID: 30454048
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A gradient boosting algorithm for survival analysis via direct optimization of concordance index.
    Chen Y; Jia Z; Mercola D; Xie X
    Comput Math Methods Med; 2013; 2013():873595. PubMed ID: 24348746
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrated genomic analysis for prediction of survival for patients with liver cancer using The Cancer Genome Atlas.
    Song YZ; Li X; Li W; Wang Z; Li K; Xie FL; Zhang F
    World J Gastroenterol; 2018 Jul; 24(28):3145-3154. PubMed ID: 30065560
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Robust estimation of the expected survival probabilities from high-dimensional Cox models with biomarker-by-treatment interactions in randomized clinical trials.
    Ternès N; Rotolo F; Michiels S
    BMC Med Res Methodol; 2017 May; 17(1):83. PubMed ID: 28532387
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of variable selection methods for high-dimensional survival data with competing events.
    Gilhodes J; Zemmour C; Ajana S; Martinez A; Delord JP; Leconte E; Boher JM; Filleron T
    Comput Biol Med; 2017 Dec; 91():159-167. PubMed ID: 29078093
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Model selection for prognostic time-to-event gene signature discovery with applications in early breast cancer data.
    Ahdesmäki M; Lancashire L; Proutski V; Wilson C; Davison TS; Harkin DP; Kennedy RD
    Stat Appl Genet Mol Biol; 2013 Oct; 12(5):619-35. PubMed ID: 24077567
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting censored survival data based on the interactions between meta-dimensional omics data in breast cancer.
    Kim D; Li R; Dudek SM; Ritchie MD
    J Biomed Inform; 2015 Aug; 56():220-8. PubMed ID: 26048077
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flexible boosting of accelerated failure time models.
    Schmid M; Hothorn T
    BMC Bioinformatics; 2008 Jun; 9():269. PubMed ID: 18538026
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coupled variable selection for regression modeling of complex treatment patterns in a clinical cancer registry.
    Schmidtmann I; Elsäßer A; Weinmann A; Binder H
    Stat Med; 2014 Dec; 33(30):5358-70. PubMed ID: 25345575
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deviance residuals-based sparse PLS and sparse kernel PLS regression for censored data.
    Bastien P; Bertrand F; Meyer N; Maumy-Bertrand M
    Bioinformatics; 2015 Feb; 31(3):397-404. PubMed ID: 25286920
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 2015 Marshall Urist Young Investigator Award: Prognostication in Patients With Long Bone Metastases: Does a Boosting Algorithm Improve Survival Estimates?
    Janssen SJ; van der Heijden AS; van Dijke M; Ready JE; Raskin KA; Ferrone ML; Hornicek FJ; Schwab JH
    Clin Orthop Relat Res; 2015 Oct; 473(10):3112-21. PubMed ID: 26155769
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Allowing for mandatory covariates in boosting estimation of sparse high-dimensional survival models.
    Binder H; Schumacher M
    BMC Bioinformatics; 2008 Jan; 9():14. PubMed ID: 18186927
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.