These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

304 related articles for article (PubMed ID: 27445009)

  • 21. Structures and catalytic performances of Me/SAPO-34 (Me = Mn, Ni, Co) catalysts for low-tem perature SCR of NO
    Liu X; Sui Z; Chen H; Chen Y; Liu H; Jiang P; Shen Z; Linghu W; Wu X
    J Environ Sci (China); 2021 Jun; 104():137-149. PubMed ID: 33985717
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Influence of the addition of vanadium to Pt/TiO
    Kim GJ; Kwon DW; Shin JH; Kim KW; Hong SC
    Environ Technol; 2019 Aug; 40(19):2588-2600. PubMed ID: 30513069
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ammonia removal in selective catalytic oxidation: Influence of catalyst structure on the nitrogen selectivity.
    Wang C; Ren D; Harle G; Qin Q; Guo L; Zheng T; Yin X; Du J; Zhao Y
    J Hazard Mater; 2021 Aug; 416():125782. PubMed ID: 33838505
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Catalytic Performance of Spherical MCM-41 Modified with Copper and Iron as Catalysts of NH
    Jankowska A; Chłopek A; Kowalczyk A; Rutkowska M; Michalik M; Liu S; Chmielarz L
    Molecules; 2020 Nov; 25(23):. PubMed ID: 33266178
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A comparative study of MOx (M = Mn, Co and Cu) modifications over CePO
    Liu C; Li F; Wu J; Hou X; Huang W; Zhang Y; Yang X
    J Hazard Mater; 2019 Feb; 363():439-446. PubMed ID: 30340173
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Study on the denitrification performance of Fe
    Wang J; Lu P; Su W; Xing Y; Li R; Li Y; Zhu T; Yue H; Cui Y
    Environ Sci Pollut Res Int; 2019 Jul; 26(20):20248-20263. PubMed ID: 31098908
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of different introduction methods of cerium and tin on the properties of titanium-based catalysts for the selective catalytic reduction of NO by NH
    Qi L; Sun Z; Yang T; Wang J; Tang Q; Huang T; Tang C; Gao F; Dong L
    J Colloid Interface Sci; 2022 May; 613():320-336. PubMed ID: 35051718
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Low-Temperature Selective Catalytic Reduction of NO with NH₃ over Mn₂O₃-Doped Fe₂O₃ Hexagonal Microsheets.
    Li Y; Wan Y; Li Y; Zhan S; Guan Q; Tian Y
    ACS Appl Mater Interfaces; 2016 Mar; 8(8):5224-33. PubMed ID: 26854574
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A new insight into the promotional effect of nitrogen-doping in activated carbon for selective catalytic reduction of NO
    Li Q; Hou Y; Xiang N; Liu Y; Huang Z
    Sci Total Environ; 2020 Oct; 740():140158. PubMed ID: 32563884
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Simultaneous removal of NO
    Yue H; Lu P; Su W; Xing Y; Li R; Wang J
    Environ Sci Pollut Res Int; 2019 May; 26(13):13602-13618. PubMed ID: 30919195
    [TBL] [Abstract][Full Text] [Related]  

  • 31. One-pot hydrothermal synthesis of dual metal incorporated CuCe-SAPO-34 zeolite for enhancing ammonia selective catalytic reduction.
    Zhou X; Chen Z; Guo Z; Yang H; Shao J; Zhang X; Zhang S
    J Hazard Mater; 2021 Mar; 405():124177. PubMed ID: 33082022
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mesoporous MnOx-CeO
    Weiman L; Haidi L; Yunfa C
    RSC Adv; 2019 Apr; 9(21):11912-11921. PubMed ID: 35517014
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of synthesis methods on catalytic activities of CoO
    Zhu L; Zeng Y; Zhang S; Deng J; Zhong Q
    J Environ Sci (China); 2017 Apr; 54():277-287. PubMed ID: 28391939
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Amino-acid modulated hierarchical In/H-Beta zeolites for selective catalytic reduction of NO with CH
    Zhao J; Dong L; Wang Y; Zhang J; Zhu R; Li C; Hong M
    Nanoscale; 2022 Apr; 14(15):5915-5928. PubMed ID: 35373805
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparison of preparation methods for ceria catalyst and the effect of surface and bulk sulfates on its activity toward NH3-SCR.
    Chang H; Ma L; Yang S; Li J; Chen L; Wang W; Hao J
    J Hazard Mater; 2013 Nov; 262():782-8. PubMed ID: 24140528
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Selective catalytic reductive removal of NO
    Zhao X; Ma M; Liu Z; Niu X; Zhu Y
    J Colloid Interface Sci; 2022 Apr; 611():9-21. PubMed ID: 34929440
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hydrothermal Aging Alleviates the Phosphorus Poisoning of Cu-SSZ-39 Catalysts for NH
    Chen J; Shan Y; Sun Y; Ding W; Xue S; Han X; Du J; Yan Z; Yu Y; He H
    Environ Sci Technol; 2023 Mar; 57(10):4113-4121. PubMed ID: 36811527
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Remarkable N
    Ko S; Tang X; Gao F; Yi H; Liu H; Luo N
    J Environ Sci (China); 2024 Apr; 138():482-495. PubMed ID: 38135414
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ti
    Zhao W; Zhang K; Wu L; Wang Q; Shang D; Zhong Q
    J Colloid Interface Sci; 2021 Jan; 581(Pt A):76-83. PubMed ID: 32768736
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Controlled synthesis of Cu-based SAPO-18/34 intergrowth zeolites for selective catalytic reduction of NO
    Zhang S; Ming S; Guo L; Bian C; Meng Y; Liu Q; Dong Y; Bi J; Li D; Wu Q; Qin K; Chen Z; Pang L; Cai W; Li T
    J Hazard Mater; 2021 Jul; 414():125543. PubMed ID: 33677322
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.