These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 27445106)
1. Highly Tunable Selectivity for Syngas-Derived Alkenes over Zinc and Sodium-Modulated Fe5 C2 Catalyst. Zhai P; Xu C; Gao R; Liu X; Li M; Li W; Fu X; Jia C; Xie J; Zhao M; Wang X; Li YW; Zhang Q; Wen XD; Ma D Angew Chem Int Ed Engl; 2016 Aug; 55(34):9902-7. PubMed ID: 27445106 [TBL] [Abstract][Full Text] [Related]
2. Sodium-Containing Spinel Zinc Ferrite as a Catalyst Precursor for the Selective Synthesis of Liquid Hydrocarbon Fuels. Choi YH; Ra EC; Kim EH; Kim KY; Jang YJ; Kang KN; Choi SH; Jang JH; Lee JS ChemSusChem; 2017 Dec; 10(23):4764-4770. PubMed ID: 29068558 [TBL] [Abstract][Full Text] [Related]
3. New horizon in C1 chemistry: breaking the selectivity limitation in transformation of syngas and hydrogenation of CO Zhou W; Cheng K; Kang J; Zhou C; Subramanian V; Zhang Q; Wang Y Chem Soc Rev; 2019 Jun; 48(12):3193-3228. PubMed ID: 31106785 [TBL] [Abstract][Full Text] [Related]
4. Direct Conversion of Syngas to Light Olefins through Fischer-Tropsch Synthesis over Fe-Zr Catalysts Modified with Sodium. Ma Z; Ma H; Zhang H; Wu X; Qian W; Sun Q; Ying W ACS Omega; 2021 Feb; 6(7):4968-4976. PubMed ID: 33644604 [TBL] [Abstract][Full Text] [Related]
5. Linear α-olefin production with Na-promoted Fe-Zn catalysts Yang S; Lee S; Kang SC; Han SJ; Jun KW; Lee KY; Kim YT RSC Adv; 2019 May; 9(25):14176-14187. PubMed ID: 35519344 [TBL] [Abstract][Full Text] [Related]
6. Cobalt-Iron-Manganese Catalysts for the Conversion of End-of-Life-Tire-Derived Syngas into Light Terminal Olefins. Falkenhagen JP; Maisonneuve L; Paalanen PP; Coste N; Malicki N; Weckhuysen BM Chemistry; 2018 Mar; 24(18):4597-4606. PubMed ID: 29493817 [TBL] [Abstract][Full Text] [Related]
7. Promoted Photothermal Catalytic CO Hydrogenation by Using TiC-Supported Co-Fe Jiang H; Zhu F; Zhou R; Wang L; Xiao Y; Zhong M Chemistry; 2023 Feb; 29(7):e202202891. PubMed ID: 36408994 [TBL] [Abstract][Full Text] [Related]
8. Direct and Highly Selective Conversion of Synthesis Gas into Lower Olefins: Design of a Bifunctional Catalyst Combining Methanol Synthesis and Carbon-Carbon Coupling. Cheng K; Gu B; Liu X; Kang J; Zhang Q; Wang Y Angew Chem Int Ed Engl; 2016 Apr; 55(15):4725-8. PubMed ID: 26961855 [TBL] [Abstract][Full Text] [Related]
9. Iron- and Cobalt-Catalyzed Alkene Hydrogenation: Catalysis with Both Redox-Active and Strong Field Ligands. Chirik PJ Acc Chem Res; 2015 Jun; 48(6):1687-95. PubMed ID: 26042837 [TBL] [Abstract][Full Text] [Related]
10. Formation of C Ling L; Wang Q; Zhang R; Li D; Wang B Phys Chem Chem Phys; 2017 Nov; 19(45):30883-30894. PubMed ID: 29134992 [TBL] [Abstract][Full Text] [Related]
11. Directly Converting Syngas to Linear α-Olefins over Core-Shell Fe Wang J; Xu Y; Ma G; Lin J; Wang H; Zhang C; Ding M ACS Appl Mater Interfaces; 2018 Dec; 10(50):43578-43587. PubMed ID: 30484308 [TBL] [Abstract][Full Text] [Related]
12. Design of Cobalt Fischer-Tropsch Catalysts for the Combined Production of Liquid Fuels and Olefin Chemicals from Hydrogen-Rich Syngas. Jeske K; Kizilkaya AC; López-Luque I; Pfänder N; Bartsch M; Concepción P; Prieto G ACS Catal; 2021 Apr; 11(8):4784-4798. PubMed ID: 33889436 [TBL] [Abstract][Full Text] [Related]
13. Controlled Nanostructure of Zeolite Crystal Encapsulating FeMnK Catalysts Targeting Light Olefins from Syngas. Zhu C; Zhang M; Huang C; Han Y; Fang K ACS Appl Mater Interfaces; 2020 Dec; 12(52):57950-57962. PubMed ID: 33337154 [TBL] [Abstract][Full Text] [Related]
14. At the frontier between heterogeneous and homogeneous catalysis: hydrogenation of olefins and alkynes with soluble iron nanoparticles. Rangheard C; de Julián Fernández C; Phua PH; Hoorn J; Lefort L; de Vries JG Dalton Trans; 2010 Sep; 39(36):8464-71. PubMed ID: 20714614 [TBL] [Abstract][Full Text] [Related]
15. High Selectivity to Aromatics by a Mg and Na Co-modified Catalyst in Direct Conversion of Syngas. Yang S; Li M; Nawaz MA; Song G; Xiao W; Wang Z; Liu D ACS Omega; 2020 May; 5(20):11701-11709. PubMed ID: 32478261 [TBL] [Abstract][Full Text] [Related]
16. Zn Doping Effect on the Performance of Fe-Based Catalysts for the Hydrogenation of CO Evdokimenko ND; Kapustin GI; Tkachenko OP; Kalmykov KB; Kustov AL Molecules; 2022 Feb; 27(3):. PubMed ID: 35164329 [TBL] [Abstract][Full Text] [Related]
17. Novel heterogeneous Fe-based catalysts for carbon dioxide hydrogenation to long chain α-olefins-A review. Wang K; Li Z; Gao X; Ma Q; Zhang J; Zhao TS; Tsubaki N Environ Res; 2024 Feb; 242():117715. PubMed ID: 37996000 [TBL] [Abstract][Full Text] [Related]
18. Selective Transformation of CO Dang S; Li S; Yang C; Chen X; Li X; Zhong L; Gao P; Sun Y ChemSusChem; 2019 Aug; 12(15):3582-3591. PubMed ID: 31197936 [TBL] [Abstract][Full Text] [Related]
19. Direct Production of Higher Oxygenates by Syngas Conversion over a Multifunctional Catalyst. Lin T; Qi X; Wang X; Xia L; Wang C; Yu F; Wang H; Li S; Zhong L; Sun Y Angew Chem Int Ed Engl; 2019 Mar; 58(14):4627-4631. PubMed ID: 30710403 [TBL] [Abstract][Full Text] [Related]
20. Cobalt carbide nanoprisms for direct production of lower olefins from syngas. Zhong L; Yu F; An Y; Zhao Y; Sun Y; Li Z; Lin T; Lin Y; Qi X; Dai Y; Gu L; Hu J; Jin S; Shen Q; Wang H Nature; 2016 Oct; 538(7623):84-87. PubMed ID: 27708303 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]