These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 27445107)
1. Joint mimicking mechanical load activates TGFβ1 in fibrin-poly(ester-urethane) scaffolds seeded with mesenchymal stem cells. Gardner OFW; Fahy N; Alini M; Stoddart MJ J Tissue Eng Regen Med; 2017 Sep; 11(9):2663-2666. PubMed ID: 27445107 [TBL] [Abstract][Full Text] [Related]
2. Differences in human mesenchymal stem cell secretomes during chondrogenic induction. Gardner OF; Fahy N; Alini M; Stoddart MJ Eur Cell Mater; 2016 Apr; 31():221-35. PubMed ID: 27062724 [TBL] [Abstract][Full Text] [Related]
3. Asymmetrical seeding of MSCs into fibrin-poly(ester-urethane) scaffolds and its effect on mechanically induced chondrogenesis. Gardner OFW; Musumeci G; Neumann AJ; Eglin D; Archer CW; Alini M; Stoddart MJ J Tissue Eng Regen Med; 2017 Oct; 11(10):2912-2921. PubMed ID: 27406210 [TBL] [Abstract][Full Text] [Related]
4. Articular Joint-Simulating Mechanical Load Activates Endogenous TGF-β in a Highly Cellularized Bioadhesive Hydrogel for Cartilage Repair. Behrendt P; Ladner Y; Stoddart MJ; Lippross S; Alini M; Eglin D; Armiento AR Am J Sports Med; 2020 Jan; 48(1):210-221. PubMed ID: 31877102 [TBL] [Abstract][Full Text] [Related]
5. Ginsenoside Rb1/TGF-β1 loaded biodegradable silk fibroin-gelatin porous scaffolds for inflammation inhibition and cartilage regeneration. Wu T; Chen Y; Liu W; Tong KL; Suen CW; Huang S; Hou H; She G; Zhang H; Zheng X; Li J; Zha Z Mater Sci Eng C Mater Biol Appl; 2020 Jun; 111():110757. PubMed ID: 32279738 [TBL] [Abstract][Full Text] [Related]
6. Adapted chondrogenic differentiation of human mesenchymal stem cells via controlled release of TGF-β1 from poly(ethylene oxide)-terephtalate/poly(butylene terepthalate) multiblock scaffolds. Rey-Rico A; Venkatesan JK; Sohier J; Moroni L; Cucchiarini M; Madry H J Biomed Mater Res A; 2015 Jan; 103(1):371-83. PubMed ID: 24665073 [TBL] [Abstract][Full Text] [Related]
7. Evaluation of the influence of platelet-rich plasma (PRP), platelet lysate (PL) and mechanical loading on chondrogenesis in vitro. Pötter N; Westbrock F; Grad S; Alini M; Stoddart MJ; Schmal H; Kubosch D; Salzmann G; Kubosch EJ Sci Rep; 2021 Oct; 11(1):20188. PubMed ID: 34642434 [TBL] [Abstract][Full Text] [Related]
8. Mesenchymal cells condensation-inducible mesh scaffolds for cartilage tissue engineering. Kim IG; Ko J; Lee HR; Do SH; Park K Biomaterials; 2016 Apr; 85():18-29. PubMed ID: 26854388 [TBL] [Abstract][Full Text] [Related]
9. Chondrogenic differentiation of bone marrow-derived mesenchymal stromal cells via biomimetic and bioactive poly-ε-caprolactone scaffolds. Schagemann JC; Paul S; Casper ME; Rohwedel J; Kramer J; Kaps C; Mittelstaedt H; Fehr M; Reinholz GG J Biomed Mater Res A; 2013 Jun; 101(6):1620-8. PubMed ID: 23184542 [TBL] [Abstract][Full Text] [Related]
10. Fabrication of poly(lactide-co-glycolide) scaffold filled with fibrin gel, mesenchymal stem cells, and poly(ethylene oxide)-b-poly(L-lysine)/TGF-β1 plasmid DNA complexes for cartilage restoration in vivo. Li B; Yang J; Ma L; Li F; Tu Z; Gao C J Biomed Mater Res A; 2013 Nov; 101(11):3097-108. PubMed ID: 23529956 [TBL] [Abstract][Full Text] [Related]
11. Mechanical load modulates chondrogenesis of human mesenchymal stem cells through the TGF-beta pathway. Li Z; Kupcsik L; Yao SJ; Alini M; Stoddart MJ J Cell Mol Med; 2010 Jun; 14(6A):1338-46. PubMed ID: 19432813 [TBL] [Abstract][Full Text] [Related]
13. Chondrogenesis of rabbit mesenchymal stem cells in fibrin/hyaluronan composite scaffold in vitro. Park SH; Choi BH; Park SR; Min BH Tissue Eng Part A; 2011 May; 17(9-10):1277-86. PubMed ID: 21189070 [TBL] [Abstract][Full Text] [Related]
14. Chondrogenic differentiation of synovial fluid mesenchymal stem cells on human meniscus-derived decellularized matrix requires exogenous growth factors. Liang Y; Idrees E; Szojka ARA; Andrews SHJ; Kunze M; Mulet-Sierra A; Jomha NM; Adesida AB Acta Biomater; 2018 Oct; 80():131-143. PubMed ID: 30267878 [TBL] [Abstract][Full Text] [Related]
15. Cryogenic 3D printing of heterogeneous scaffolds with gradient mechanical strengths and spatial delivery of osteogenic peptide/TGF-β1 for osteochondral tissue regeneration. Wang C; Yue H; Huang W; Lin X; Xie X; He Z; He X; Liu S; Bai L; Lu B; Wei Y; Wang M Biofabrication; 2020 Mar; 12(2):025030. PubMed ID: 32106097 [TBL] [Abstract][Full Text] [Related]
16. TGF-β3 encapsulated PLCL scaffold by a supercritical CO2-HFIP co-solvent system for cartilage tissue engineering. Kim SH; Kim SH; Jung Y J Control Release; 2015 May; 206():101-7. PubMed ID: 25804870 [TBL] [Abstract][Full Text] [Related]
17. In situ chondrogenic differentiation of human adipose tissue-derived stem cells in a TGF-beta1 loaded fibrin-poly(lactide-caprolactone) nanoparticulate complex. Jung Y; Chung YI; Kim SH; Tae G; Kim YH; Rhie JW; Kim SH; Kim SH Biomaterials; 2009 Sep; 30(27):4657-64. PubMed ID: 19520426 [TBL] [Abstract][Full Text] [Related]
18. Suppressing mesenchymal stem cell hypertrophy and endochondral ossification in 3D cartilage regeneration with nanofibrous poly(l-lactic acid) scaffold and matrilin-3. Liu Q; Wang J; Chen Y; Zhang Z; Saunders L; Schipani E; Chen Q; Ma PX Acta Biomater; 2018 Aug; 76():29-38. PubMed ID: 29940371 [TBL] [Abstract][Full Text] [Related]
19. An injectable heparin-conjugated hyaluronan scaffold for local delivery of transforming growth factor β1 promotes successful chondrogenesis. Levinson C; Lee M; Applegate LA; Zenobi-Wong M Acta Biomater; 2019 Nov; 99():168-180. PubMed ID: 31536840 [TBL] [Abstract][Full Text] [Related]
20. The restoration of full-thickness cartilage defects with BMSCs and TGF-beta 1 loaded PLGA/fibrin gel constructs. Wang W; Li B; Yang J; Xin L; Li Y; Yin H; Qi Y; Jiang Y; Ouyang H; Gao C Biomaterials; 2010 Dec; 31(34):8964-73. PubMed ID: 20822812 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]