These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 27445159)
1. Bioengineered human heparin with anticoagulant activity. Lord MS; Cheng B; Tang F; Lyons JG; Rnjak-Kovacina J; Whitelock JM Metab Eng; 2016 Nov; 38():105-114. PubMed ID: 27445159 [TBL] [Abstract][Full Text] [Related]
2. Optimization of bioengineered heparin/heparan sulfate production for therapeutic applications. Lord MS; Jung M; Whitelock JM Bioengineered; 2017 Sep; 8(5):661-664. PubMed ID: 28394734 [TBL] [Abstract][Full Text] [Related]
3. Structure-Activity Relationships of Bioengineered Heparin/Heparan Sulfates Produced in Different Bioreactors. Kim HN; Whitelock JM; Lord MS Molecules; 2017 May; 22(5):. PubMed ID: 28505124 [TBL] [Abstract][Full Text] [Related]
4. Mast cell differentiation and activation is closely linked to expression of genes coding for the serglycin proteoglycan core protein and a distinct set of chondroitin sulfate and heparin sulfotransferases. Duelli A; Rönnberg E; Waern I; Ringvall M; Kolset SO; Pejler G J Immunol; 2009 Dec; 183(11):7073-83. PubMed ID: 19915053 [TBL] [Abstract][Full Text] [Related]
5. Serglycin proteoglycan is required for multiple myeloma cell adhesion, in vivo growth, and vascularization. Purushothaman A; Toole BP J Biol Chem; 2014 Feb; 289(9):5499-509. PubMed ID: 24403068 [TBL] [Abstract][Full Text] [Related]
6. Serglycin-independent release of active mast cell proteases in response to Toxoplasma gondii infection. Sawesi O; Spillmann D; Lundén A; Wernersson S; Åbrink M J Biol Chem; 2010 Dec; 285(49):38005-13. PubMed ID: 20864536 [TBL] [Abstract][Full Text] [Related]
7. Expression of human perlecan domain I as a recombinant heparan sulfate proteoglycan with 20-kDa glycosaminoglycan chains. Graham LD; Whitelock JM; Underwood PA Biochem Biophys Res Commun; 1999 Mar; 256(3):542-8. PubMed ID: 10080934 [TBL] [Abstract][Full Text] [Related]
8. Serglycin-binding proteins in activated macrophages and platelets. Kolset SO; Mann DM; Uhlin-Hansen L; Winberg JO; Ruoslahti E J Leukoc Biol; 1996 Apr; 59(4):545-54. PubMed ID: 8613703 [TBL] [Abstract][Full Text] [Related]
9. Glycosaminoglycan Neutralization in Coagulation Control. Sobczak AIS; Pitt SJ; Stewart AJ Arterioscler Thromb Vasc Biol; 2018 Jun; 38(6):1258-1270. PubMed ID: 29674476 [TBL] [Abstract][Full Text] [Related]
10. Differences in the apical and basolateral pathways for glycosaminoglycan biosynthesis in Madin-Darby canine kidney cells. Vuong TT; Prydz K; Tveit H Glycobiology; 2006 Apr; 16(4):326-32. PubMed ID: 16394120 [TBL] [Abstract][Full Text] [Related]
11. Increased Expression of Serglycin in Specific Carcinomas and Aggressive Cancer Cell Lines. Korpetinou A; Papachristou DJ; Lampropoulou A; Bouris P; Labropoulou VT; Noulas A; Karamanos NK; Theocharis AD Biomed Res Int; 2015; 2015():690721. PubMed ID: 26581653 [TBL] [Abstract][Full Text] [Related]
12. Widespread expression of chondroitin sulfate-type serglycins with CD44 binding ability in hematopoietic cells. Toyama-Sorimachi N; Kitamura F; Habuchi H; Tobita Y; Kimata K; Miyasaka M J Biol Chem; 1997 Oct; 272(42):26714-9. PubMed ID: 9334256 [TBL] [Abstract][Full Text] [Related]
13. Serglycin--structure and biology. Kolset SO; Tveit H Cell Mol Life Sci; 2008 Apr; 65(7-8):1073-85. PubMed ID: 18066495 [TBL] [Abstract][Full Text] [Related]
14. Serglycin is a theranostic target in nasopharyngeal carcinoma that promotes metastasis. Li XJ; Ong CK; Cao Y; Xiang YQ; Shao JY; Ooi A; Peng LX; Lu WH; Zhang Z; Petillo D; Qin L; Bao YN; Zheng FJ; Chia CS; Iyer NG; Kang TB; Zeng YX; Soo KC; Trent JM; Teh BT; Qian CN Cancer Res; 2011 Apr; 71(8):3162-72. PubMed ID: 21289131 [TBL] [Abstract][Full Text] [Related]
15. Proteoglycan serglycin promotes non-small cell lung cancer cell migration through the interaction of its glycosaminoglycans with CD44. Guo JY; Chiu CH; Wang MJ; Li FA; Chen JY J Biomed Sci; 2020 Jan; 27(1):2. PubMed ID: 31898491 [TBL] [Abstract][Full Text] [Related]
16. Plasma anticoagulant mechanisms of heparin, heparan sulfate, and dermatan sulfate. Ofosu FA; Buchanan MR; Anvari N; Smith LM; Blajchman MA Ann N Y Acad Sci; 1989; 556():123-31. PubMed ID: 2525356 [TBL] [Abstract][Full Text] [Related]
17. Multiplex genome editing of mammalian cells for producing recombinant heparin. Thacker BE; Thorne KJ; Cartwright C; Park J; Glass K; Chea A; Kellman BP; Lewis NE; Wang Z; Di Nardo A; Sharfstein ST; Jeske W; Walenga J; Hogwood J; Gray E; Mulloy B; Esko JD; Glass CA Metab Eng; 2022 Mar; 70():155-165. PubMed ID: 35038554 [TBL] [Abstract][Full Text] [Related]
18. Dermatan sulfate is the predominant antithrombotic glycosaminoglycan in vessel walls: implications for a possible physiological function of heparin cofactor II. Tovar AM; de Mattos DA; Stelling MP; Sarcinelli-Luz BS; Nazareth RA; Mourão PA Biochim Biophys Acta; 2005 Apr; 1740(1):45-53. PubMed ID: 15878740 [TBL] [Abstract][Full Text] [Related]
19. Glomerular proteoglycans in diabetes. Partial structural characterization and metabolism of de novo synthesized heparan-35SO4 and dermatan-35SO4 proteoglycans in streptozocin-induced diabetic rats. Klein DJ; Brown DM; Oegema TR Diabetes; 1986 Oct; 35(10):1130-42. PubMed ID: 2944782 [TBL] [Abstract][Full Text] [Related]
20. Modulation of proteoglycan synthesis by bovine vascular smooth muscle cells during cellular proliferation and treatment with heparin. Williams SP; Mason RM Arch Biochem Biophys; 1991 Jun; 287(2):386-96. PubMed ID: 1716868 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]