These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
239 related articles for article (PubMed ID: 27445351)
1. Energy and lipid metabolism during direct and diapause development in a pierid butterfly. Lehmann P; Pruisscher P; Posledovich D; Carlsson M; Käkelä R; Tang P; Nylin S; Wheat CW; Wiklund C; Gotthard K J Exp Biol; 2016 Oct; 219(Pt 19):3049-3060. PubMed ID: 27445351 [TBL] [Abstract][Full Text] [Related]
2. Metabolome dynamics of diapause in the butterfly Lehmann P; Pruisscher P; Koštál V; Moos M; Šimek P; Nylin S; Agren R; Väremo L; Wiklund C; Wheat CW; Gotthard K J Exp Biol; 2018 Jan; 221(Pt 2):. PubMed ID: 29180603 [TBL] [Abstract][Full Text] [Related]
3. Developmental plasticity in metabolism but not in energy reserve accumulation in a seasonally polyphenic butterfly. Kivelä SM; Gotthard K; Lehmann P J Exp Biol; 2019 Jul; 222(Pt 13):. PubMed ID: 31138637 [TBL] [Abstract][Full Text] [Related]
4. Temperature dependence of gas exchange patterns shift as diapause progresses in the butterfly Pieris napi. Süess P; Roberts KT; Lehmann P J Insect Physiol; 2023 Dec; 151():104585. PubMed ID: 37977342 [TBL] [Abstract][Full Text] [Related]
5. Diapause Induced by Temperature and Photoperiod Affects Fatty Acid Compositions and Cold Tolerance of Phthorimaea Operculella (Lepidoptera: Gelechiidae). Hemmati C; Moharramipour S; Talebi AA Environ Entomol; 2017 Dec; 46(6):1456-1463. PubMed ID: 29126214 [TBL] [Abstract][Full Text] [Related]
6. Time- and temperature-dependent dynamics of prothoracicotropic hormone and ecdysone sensitivity co-regulate pupal diapause in the green-veined white butterfly Pieris napi. Süess P; Dircksen H; Roberts KT; Gotthard K; Nässel DR; Wheat CW; Carlsson MA; Lehmann P Insect Biochem Mol Biol; 2022 Oct; 149():103833. PubMed ID: 36084800 [TBL] [Abstract][Full Text] [Related]
7. Idiosyncratic development of sensory structures in brains of diapausing butterfly pupae: implications for information processing. Lehmann P; Nylin S; Gotthard K; Carlsson MA Proc Biol Sci; 2017 Jul; 284(1858):. PubMed ID: 28679728 [TBL] [Abstract][Full Text] [Related]
8. A quantitative model of temperature-dependent diapause progression. von Schmalensee L; Süess P; Roberts KT; Gotthard K; Lehmann P Proc Natl Acad Sci U S A; 2024 Sep; 121(36):e2407057121. PubMed ID: 39196619 [TBL] [Abstract][Full Text] [Related]
9. Latitudinal variation in diapause duration and post-winter development in two pierid butterflies in relation to phenological specialization. Posledovich D; Toftegaard T; Wiklund C; Ehrlén J; Gotthard K Oecologia; 2015 Jan; 177(1):181-90. PubMed ID: 25362581 [TBL] [Abstract][Full Text] [Related]
10. Local thermal environment and warming influence supercooling and drive widespread shifts in the metabolome of diapausing Pieris rapae butterflies. Mikucki EE; Lockwood BL J Exp Biol; 2021 Nov; 224(22):. PubMed ID: 34694403 [TBL] [Abstract][Full Text] [Related]
11. Molecular characterization of three Hsp90 from Pieris and expression patterns in response to cold and thermal stress in summer and winter diapause of Pieris melete. Wu YK; Zou C; Fu DM; Zhang WN; Xiao HJ Insect Sci; 2018 Apr; 25(2):273-283. PubMed ID: 27791340 [TBL] [Abstract][Full Text] [Related]
12. A true summer diapause induced by high temperatures in the cotton bollworm, Helicoverpa armigera (Lepidoptera: Noctuidae). Liu Z; Gong P; Wu K; Sun J; Li D J Insect Physiol; 2006 Oct; 52(10):1012-20. PubMed ID: 16979652 [TBL] [Abstract][Full Text] [Related]
13. Optimal low temperature and chilling period for both summer and winter diapause development in Pieris melete: based on a similar mechanism. Xiao H; Wu S; Chen C; Xue F PLoS One; 2013; 8(2):e56404. PubMed ID: 23441185 [TBL] [Abstract][Full Text] [Related]
14. Shifts in metabolomic profiles of the parasitoid Nasonia vitripennis associated with elevated cold tolerance induced by the parasitoid's diapause, host diapause and host diet augmented with proline. Li Y; Zhang L; Chen H; Koštál V; Simek P; Moos M; Denlinger DL Insect Biochem Mol Biol; 2015 Aug; 63():34-46. PubMed ID: 26005120 [TBL] [Abstract][Full Text] [Related]
15. Effect of photoperiod and temperature on the intensity of pupal diapause in the cotton bollworm, Helicoverpa armigera (Lepidoptera: Noctuidae). Chen C; Xia QW; Fu S; Wu XF; Xue FS Bull Entomol Res; 2014 Feb; 104(1):12-8. PubMed ID: 23651539 [TBL] [Abstract][Full Text] [Related]
16. Effects of Autumn Warming on Energy Consumption of Diapausing Fall Webworm (Lepidoptera: Arctiidae) Pupae. Zhao L; Wang W J Insect Sci; 2021 Mar; 21(2):. PubMed ID: 33822125 [TBL] [Abstract][Full Text] [Related]
17. A novel trade-off of insect diapause affecting a sequestered chemical defense. Fordyce JA; Nice CC; Shapiro AM Oecologia; 2006 Aug; 149(1):101-6. PubMed ID: 16832650 [TBL] [Abstract][Full Text] [Related]
18. Thermal plasticity of growth and development varies adaptively among alternative developmental pathways. Kivelä SM; Svensson B; Tiwe A; Gotthard K Evolution; 2015 Sep; 69(9):2399-413. PubMed ID: 26202579 [TBL] [Abstract][Full Text] [Related]
19. A simple method to discriminate diapause from non-diapause pupae in large and small white butterflies, Pieris brassicae and P. rapae crucivora. Kaneko J; Katagiri C Naturwissenschaften; 2006 Aug; 93(8):393-6. PubMed ID: 16670907 [TBL] [Abstract][Full Text] [Related]
20. Changes of biogenic amine levels in haemolymph during diapausing and non-diapausing status in Pieris brassicae L. Isabel G; Gourdoux L; Moreau R Comp Biochem Physiol A Mol Integr Physiol; 2001 Jan; 128(1):117-27. PubMed ID: 11137444 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]