These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

307 related articles for article (PubMed ID: 27445669)

  • 1. microRNAs: Emerging Targets Regulating Oxidative Stress in the Models of Parkinson's Disease.
    Xie Y; Chen Y
    Front Neurosci; 2016; 10():298. PubMed ID: 27445669
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MicroRNAs in Parkinson's disease and emerging therapeutic targets.
    Martinez B; Peplow PV
    Neural Regen Res; 2017 Dec; 12(12):1945-1959. PubMed ID: 29323027
    [TBL] [Abstract][Full Text] [Related]  

  • 3. IDH2 deficiency promotes mitochondrial dysfunction and dopaminergic neurotoxicity: implications for Parkinson's disease.
    Kim H; Kim SH; Cha H; Kim SR; Lee JH; Park JW
    Free Radic Res; 2016 Aug; 50(8):853-60. PubMed ID: 27142242
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Natural Molecules From Chinese Herbs Protecting Against Parkinson's Disease via Anti-oxidative Stress.
    Ding Y; Xin C; Zhang CW; Lim KL; Zhang H; Fu Z; Li L; Huang W
    Front Aging Neurosci; 2018; 10():246. PubMed ID: 30233351
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aldehyde Dehydrogenase 1 making molecular inroads into the differential vulnerability of nigrostriatal dopaminergic neuron subtypes in Parkinson's disease.
    Cai H; Liu G; Sun L; Ding J
    Transl Neurodegener; 2014; 3():27. PubMed ID: 25705376
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reprint of: revisiting oxidative stress and mitochondrial dysfunction in the pathogenesis of Parkinson disease-resemblance to the effect of amphetamine drugs of abuse.
    Perfeito R; Cunha-Oliveira T; Rego AC
    Free Radic Biol Med; 2013 Sep; 62():186-201. PubMed ID: 23743292
    [TBL] [Abstract][Full Text] [Related]  

  • 7. microRNAs in Parkinson's Disease: From Pathogenesis to Novel Diagnostic and Therapeutic Approaches.
    Leggio L; Vivarelli S; L'Episcopo F; Tirolo C; Caniglia S; Testa N; Marchetti B; Iraci N
    Int J Mol Sci; 2017 Dec; 18(12):. PubMed ID: 29236052
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glutathione
    Jewett M; Dickson E; Brolin K; Negrini M; Jimenez-Ferrer I; Swanberg M
    Front Neurol; 2018; 9():222. PubMed ID: 29681884
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxidative stress and Parkinson's disease.
    Blesa J; Trigo-Damas I; Quiroga-Varela A; Jackson-Lewis VR
    Front Neuroanat; 2015; 9():91. PubMed ID: 26217195
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A secret that underlies Parkinson's disease: The damaging cycle.
    Sun F; Deng Y; Han X; Liu Q; Zhang P; Manzoor R; Ma H
    Neurochem Int; 2019 Oct; 129():104484. PubMed ID: 31173779
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A crazy trio in Parkinson's disease: metabolism alteration, α-synuclein aggregation, and oxidative stress.
    Li S; Liu Y; Lu S; Xu J; Liu X; Yang D; Yang Y; Hou L; Li N
    Mol Cell Biochem; 2024 Apr; ():. PubMed ID: 38625515
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RISC in PD: the impact of microRNAs in Parkinson's disease cellular and molecular pathogenesis.
    Heman-Ackah SM; Hallegger M; Rao MS; Wood MJ
    Front Mol Neurosci; 2013 Nov; 6():40. PubMed ID: 24312000
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Downregulation of miR-124 in MPTP-treated mouse model of Parkinson's disease and MPP iodide-treated MN9D cells modulates the expression of the calpain/cdk5 pathway proteins.
    Kanagaraj N; Beiping H; Dheen ST; Tay SS
    Neuroscience; 2014 Jul; 272():167-79. PubMed ID: 24792712
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Cross-Links of Endoplasmic Reticulum Stress, Autophagy, and Neurodegeneration in Parkinson's Disease.
    Ren H; Zhai W; Lu X; Wang G
    Front Aging Neurosci; 2021; 13():691881. PubMed ID: 34168552
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nrf2 activation by tauroursodeoxycholic acid in experimental models of Parkinson's disease.
    Moreira S; Fonseca I; Nunes MJ; Rosa A; Lemos L; Rodrigues E; Carvalho AN; Outeiro TF; Rodrigues CMP; Gama MJ; Castro-Caldas M
    Exp Neurol; 2017 Sep; 295():77-87. PubMed ID: 28552716
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GUCY2C signaling limits dopaminergic neuron vulnerability to toxic insults.
    Cheslow L; Byrne M; Kopenhaver JS; Iacovitti L; Smeyne RJ; Snook AE; Waldman SA
    Res Sq; 2023 Oct; ():. PubMed ID: 37886524
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic energy decline coupled dysregulation of catecholamine metabolism in physiologically highly active neurons: implications for selective neuronal death in Parkinson's disease.
    Wimalasena K; Adetuyi O; Eldani M
    Front Aging Neurosci; 2024; 16():1339295. PubMed ID: 38450382
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GUCY2C signaling limits dopaminergic neuron vulnerability to toxic insults.
    Cheslow L; Byrne M; Kopenhaver JS; Iacovitti L; Smeyne RJ; Snook AE; Waldman SA
    NPJ Parkinsons Dis; 2024 Apr; 10(1):83. PubMed ID: 38615030
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Current perspective of mitochondrial biology in Parkinson's disease.
    Ammal Kaidery N; Thomas B
    Neurochem Int; 2018 Jul; 117():91-113. PubMed ID: 29550604
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Systemic Analysis of miRNAs in PD Stress Condition: miR-5701 Modulates Mitochondrial-Lysosomal Cross Talk to Regulate Neuronal Death.
    Prajapati P; Sripada L; Singh K; Roy M; Bhatelia K; Dalwadi P; Singh R
    Mol Neurobiol; 2018 Jun; 55(6):4689-4701. PubMed ID: 28710704
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.