BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 27445695)

  • 21. Brain-derived neurotrophic factor is required for the establishment of the proper number of dopaminergic neurons in the substantia nigra pars compacta.
    Baquet ZC; Bickford PC; Jones KR
    J Neurosci; 2005 Jun; 25(26):6251-9. PubMed ID: 15987955
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characteristics of electrically evoked somatodendritic dopamine release in substantia nigra and ventral tegmental area in vitro.
    Rice ME; Cragg SJ; Greenfield SA
    J Neurophysiol; 1997 Feb; 77(2):853-62. PubMed ID: 9065854
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Calpain inhibition reduces NMDA receptor rundown in rat substantia nigra dopamine neurons.
    Zhao J; Baudry M; Jones S
    Neuropharmacology; 2018 Jul; 137():221-229. PubMed ID: 29772491
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cell-attached and Whole-cell Patch-clamp Recordings of Dopamine Neurons in the Substantia Nigra Pars Compacta of Mouse Brain Slices.
    Cattaneo S; Regoni M; Sassone J; Taverna S
    Bio Protoc; 2021 Aug; 11(15):e4109. PubMed ID: 34458403
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Selective loss of dopaminergic neurons in the substantia nigra of Pitx3-deficient aphakia mice.
    Hwang DY; Ardayfio P; Kang UJ; Semina EV; Kim KS
    Brain Res Mol Brain Res; 2003 Jun; 114(2):123-31. PubMed ID: 12829322
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Prostaglandin E receptor EP1 enhances GABA-mediated inhibition of dopaminergic neurons in the substantia nigra pars compacta and regulates dopamine level in the dorsal striatum.
    Tanaka Y; Furuyashiki T; Momiyama T; Namba H; Mizoguchi A; Mitsumori T; Kayahara T; Shichi H; Kimura K; Matsuoka T; Nawa H; Narumiya S
    Eur J Neurosci; 2009 Dec; 30(12):2338-46. PubMed ID: 20092576
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Lack of interleukin-13 receptor α1 delays the loss of dopaminergic neurons during chronic stress.
    Mori S; Sugama S; Nguyen W; Michel T; Sanna MG; Sanchez-Alavez M; Cintron-Colon R; Moroncini G; Kakinuma Y; Maher P; Conti B
    J Neuroinflammation; 2017 Apr; 14(1):88. PubMed ID: 28427412
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanisms regulating spill-over of synaptic glutamate to extrasynaptic NMDA receptors in mouse substantia nigra dopaminergic neurons.
    Wild AR; Bollands M; Morris PG; Jones S
    Eur J Neurosci; 2015 Nov; 42(9):2633-43. PubMed ID: 26370007
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Marked dopaminergic cell loss subsequent to developmental, intranigral expression of glial cell line-derived neurotrophic factor.
    Chun HS; Yoo MS; DeGiorgio LA; Volpe BT; Peng D; Baker H; Peng C; Son JH
    Exp Neurol; 2002 Feb; 173(2):235-44. PubMed ID: 11822887
    [TBL] [Abstract][Full Text] [Related]  

  • 30. SK- and h-current contribute to the generation of theta-like resonance of rat substantia nigra pars compacta dopaminergic neurons at hyperpolarized membrane potentials.
    Xue WN; Wang Y; He SM; Wang XL; Zhu JL; Gao GD
    Brain Struct Funct; 2012 Apr; 217(2):379-94. PubMed ID: 22108680
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Presynaptic facilitation of glutamatergic synapses to dopaminergic neurons of the rat substantia nigra by endogenous stimulation of vanilloid receptors.
    Marinelli S; Di Marzo V; Berretta N; Matias I; Maccarrone M; Bernardi G; Mercuri NB
    J Neurosci; 2003 Apr; 23(8):3136-44. PubMed ID: 12716921
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dopaminergic substantia nigra neurons express functional nmda receptors in postnatal rats.
    Lin JY; Lipski J
    J Neurophysiol; 2001 Mar; 85(3):1336-9. PubMed ID: 11248004
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Differential Control of Dopaminergic Excitability and Locomotion by Cholinergic Inputs in Mouse Substantia Nigra.
    Estakhr J; Abazari D; Frisby K; McIntosh JM; Nashmi R
    Curr Biol; 2017 Jul; 27(13):1900-1914.e4. PubMed ID: 28648825
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Activity-dependent regulation of the dopamine phenotype in substantia nigra neurons.
    Aumann T; Horne M
    J Neurochem; 2012 May; 121(4):497-515. PubMed ID: 22356203
    [TBL] [Abstract][Full Text] [Related]  

  • 35. LPA signaling is required for dopaminergic neuron development and is reduced through low expression of the LPA1 receptor in a 6-OHDA lesion model of Parkinson's disease.
    Yang XY; Zhao EY; Zhuang WX; Sun FX; Han HL; Han HR; Lin ZJ; Pan ZF; Qu MH; Zeng XW; Ding Y
    Neurol Sci; 2015 Nov; 36(11):2027-33. PubMed ID: 26169757
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Early signs of neuronal apoptosis in the substantia nigra pars compacta of the progressive neurodegenerative mouse 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/probenecid model of Parkinson's disease.
    Novikova L; Garris BL; Garris DR; Lau YS
    Neuroscience; 2006 Jun; 140(1):67-76. PubMed ID: 16533572
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Quantitative expression proteomics and phosphoproteomics profile of brain from PINK1 knockout mice: insights into mechanisms of familial Parkinson's disease.
    Triplett JC; Zhang Z; Sultana R; Cai J; Klein JB; Büeler H; Butterfield DA
    J Neurochem; 2015 Jun; 133(5):750-65. PubMed ID: 25626353
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Heterogeneity of electrically evoked dopamine release and reuptake in substantia nigra, ventral tegmental area, and striatum.
    Cragg S; Rice ME; Greenfield SA
    J Neurophysiol; 1997 Feb; 77(2):863-73. PubMed ID: 9065855
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Loss of collapsin response mediator protein 4 suppresses dopaminergic neuron death in an 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced mouse model of Parkinson's disease.
    Tonouchi A; Nagai J; Togashi K; Goshima Y; Ohshima T
    J Neurochem; 2016 Jun; 137(5):795-805. PubMed ID: 26991935
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Remodeling of the dendritic structure of the striatal medium spiny neurons accompanies behavioral recovery in a mouse model of Parkinson's disease.
    Kim W; Im MJ; Park CH; Lee CJ; Choi S; Yoon BJ
    Neurosci Lett; 2013 Dec; 557 Pt B():95-100. PubMed ID: 24176882
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.