BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

324 related articles for article (PubMed ID: 27445702)

  • 1. Construction and Evaluation of Rodent-Specific rTMS Coils.
    Tang AD; Lowe AS; Garrett AR; Woodward R; Bennett W; Canty AJ; Garry MI; Hinder MR; Summers JJ; Gersner R; Rotenberg A; Thickbroom G; Walton J; Rodger J
    Front Neural Circuits; 2016; 10():47. PubMed ID: 27445702
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A C-shaped miniaturized coil for transcranial magnetic stimulation in rodents.
    Jiang W; Isenhart R; Liu CY; Song D
    J Neural Eng; 2023 Mar; 20(2):. PubMed ID: 36863013
    [No Abstract]   [Full Text] [Related]  

  • 3. Design and Evaluation of a Rodent-Specific Transcranial Magnetic Stimulation Coil: An In Silico and In Vivo Validation Study.
    Boonzaier J; Petrov PI; Otte WM; Smirnov N; Neggers SFW; Dijkhuizen RM
    Neuromodulation; 2020 Apr; 23(3):324-334. PubMed ID: 31353780
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Marked differences in the thermal characteristics of figure-of-eight shaped coils used for repetitive transcranial magnetic stimulation.
    Weyh T; Wendicke K; Mentschel C; Zantow H; Siebner HR
    Clin Neurophysiol; 2005 Jun; 116(6):1477-86. PubMed ID: 15978511
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interleaved TMS/CASL: Comparison of different rTMS protocols.
    Moisa M; Pohmann R; Uludağ K; Thielscher A
    Neuroimage; 2010 Jan; 49(1):612-20. PubMed ID: 19615453
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational and experimental analysis of TMS-induced electric field vectors critical to neuronal activation.
    Krieg TD; Salinas FS; Narayana S; Fox PT; Mogul DJ
    J Neural Eng; 2015 Aug; 12(4):046014. PubMed ID: 26052136
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prefrontal TMS produces smaller EEG responses than motor-cortex TMS: implications for rTMS treatment in depression.
    Kähkönen S; Komssi S; Wilenius J; Ilmoniemi RJ
    Psychopharmacology (Berl); 2005 Aug; 181(1):16-20. PubMed ID: 15719214
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low frequency repetitive transcranial magnetic stimulation to the non-lesioned hemisphere improves paretic arm reach-to-grasp performance after chronic stroke.
    Tretriluxana J; Kantak S; Tretriluxana S; Wu AD; Fisher BE
    Disabil Rehabil Assist Technol; 2013 Mar; 8(2):121-4. PubMed ID: 23244391
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Short-term and long-term plasticity interaction in human primary motor cortex.
    Iezzi E; Suppa A; Conte A; Li Voti P; Bologna M; Berardelli A
    Eur J Neurosci; 2011 May; 33(10):1908-15. PubMed ID: 21488986
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long-lasting inhibition of cerebellar output.
    Popa T; Russo M; Meunier S
    Brain Stimul; 2010 Jul; 3(3):161-9. PubMed ID: 20633445
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improvement of motor performance and modulation of cortical excitability by repetitive transcranial magnetic stimulation of the motor cortex in Parkinson's disease.
    Lefaucheur JP; Drouot X; Von Raison F; Ménard-Lefaucheur I; Cesaro P; Nguyen JP
    Clin Neurophysiol; 2004 Nov; 115(11):2530-41. PubMed ID: 15465443
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of motor cortex rTMS on corticospinal descending activity.
    Di Lazzaro V; Profice P; Pilato F; Dileone M; Oliviero A; Ziemann U
    Clin Neurophysiol; 2010 Apr; 121(4):464-73. PubMed ID: 20096628
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New coil positioning method for interleaved transcranial magnetic stimulation (TMS)/functional MRI (fMRI) and its validation in a motor cortex study.
    Moisa M; Pohmann R; Ewald L; Thielscher A
    J Magn Reson Imaging; 2009 Jan; 29(1):189-97. PubMed ID: 19097080
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low-intensity repetitive transcranial magnetic stimulation decreases motor cortical excitability in humans.
    Todd G; Flavel SC; Ridding MC
    J Appl Physiol (1985); 2006 Aug; 101(2):500-5. PubMed ID: 16675612
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temporal and spatial profiles of evoked activity induced by magnetic stimulation using millimeter-sized coils in the mouse auditory cortex in vivo.
    Yoshikawa T; Higuchi H; Furukawa R; Tateno T
    Brain Res; 2022 Dec; 1796():148092. PubMed ID: 36115587
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes of blood lactate levels after repetitive transcranial magnetic stimulation.
    Alagona G; Coco M; Rapisarda G; Costanzo E; Maci T; Restivo D; Maugeri A; Perciavalle V
    Neurosci Lett; 2009 Jan; 450(2):111-3. PubMed ID: 19084051
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulatory effects of 1 Hz rTMS over the cerebellum on motor cortex excitability.
    Fierro B; Giglia G; Palermo A; Pecoraro C; Scalia S; Brighina F
    Exp Brain Res; 2007 Jan; 176(3):440-7. PubMed ID: 16917771
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inducing homeostatic-like plasticity in human motor cortex through converging corticocortical inputs.
    Pötter-Nerger M; Fischer S; Mastroeni C; Groppa S; Deuschl G; Volkmann J; Quartarone A; Münchau A; Siebner HR
    J Neurophysiol; 2009 Dec; 102(6):3180-90. PubMed ID: 19726723
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coil design considerations for deep transcranial magnetic stimulation.
    Deng ZD; Lisanby SH; Peterchev AV
    Clin Neurophysiol; 2014 Jun; 125(6):1202-12. PubMed ID: 24411523
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison between short train, monophasic and biphasic repetitive transcranial magnetic stimulation (rTMS) of the human motor cortex.
    Arai N; Okabe S; Furubayashi T; Terao Y; Yuasa K; Ugawa Y
    Clin Neurophysiol; 2005 Mar; 116(3):605-13. PubMed ID: 15721074
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.