BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

333 related articles for article (PubMed ID: 27445751)

  • 1. Correcting for Blood Arrival Time in Global Mean Regression Enhances Functional Connectivity Analysis of Resting State fMRI-BOLD Signals.
    Erdoğan SB; Tong Y; Hocke LM; Lindsey KP; deB Frederick B
    Front Hum Neurosci; 2016; 10():311. PubMed ID: 27445751
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Global signal regression acts as a temporal downweighting process in resting-state fMRI.
    Nalci A; Rao BD; Liu TT
    Neuroimage; 2017 May; 152():602-618. PubMed ID: 28089677
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatial variation of changes in test-retest reliability of functional connectivity after global signal regression: The effect of considering hemodynamic delay.
    Wanger TJ; Janes AC; Frederick BB
    Hum Brain Mapp; 2023 Feb; 44(2):668-678. PubMed ID: 36214198
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimating and mitigating the effects of systemic low frequency oscillations (sLFO) on resting state networks in awake non-human primates using time lag dependent methodology.
    Cao L; Kohut SJ; Frederick BD
    Front Neuroimaging; 2022; 1():1031991. PubMed ID: 37555145
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The impact of global signal regression on resting state correlations: are anti-correlated networks introduced?
    Murphy K; Birn RM; Handwerker DA; Jones TB; Bandettini PA
    Neuroimage; 2009 Feb; 44(3):893-905. PubMed ID: 18976716
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatiotemporal Empirical Mode Decomposition of Resting-State fMRI Signals: Application to Global Signal Regression.
    Moradi N; Dousty M; Sotero RC
    Front Neurosci; 2019; 13():736. PubMed ID: 31396032
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anticorrelations in resting state networks without global signal regression.
    Chai XJ; Castañón AN; Ongür D; Whitfield-Gabrieli S
    Neuroimage; 2012 Jan; 59(2):1420-8. PubMed ID: 21889994
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of global signal regression on DCM estimates of noise and effective connectivity from resting state fMRI.
    Almgren H; Van de Steen F; Razi A; Friston K; Marinazzo D
    Neuroimage; 2020 Mar; 208():116435. PubMed ID: 31816423
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Disentangling resting-state BOLD variability and PCC functional connectivity in 22q11.2 deletion syndrome.
    Zöller D; Schaer M; Scariati E; Padula MC; Eliez S; Van De Ville D
    Neuroimage; 2017 Apr; 149():85-97. PubMed ID: 28143774
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantification of the impact of a confounding variable on functional connectivity confirms anti-correlated networks in the resting-state.
    Carbonell F; Bellec P; Shmuel A
    Neuroimage; 2014 Feb; 86():343-53. PubMed ID: 24128734
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identifying and removing widespread signal deflections from fMRI data: Rethinking the global signal regression problem.
    Aquino KM; Fulcher BD; Parkes L; Sabaroedin K; Fornito A
    Neuroimage; 2020 May; 212():116614. PubMed ID: 32084564
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of model-based physiological noise correction on default mode network anti-correlations and correlations.
    Chang C; Glover GH
    Neuroimage; 2009 Oct; 47(4):1448-59. PubMed ID: 19446646
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Can apparent resting state connectivity arise from systemic fluctuations?
    Tong Y; Hocke LM; Fan X; Janes AC; Frederick Bd
    Front Hum Neurosci; 2015; 9():285. PubMed ID: 26029095
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inter-individual differences in resting-state functional connectivity predict task-induced BOLD activity.
    Mennes M; Kelly C; Zuo XN; Di Martino A; Biswal BB; Castellanos FX; Milham MP
    Neuroimage; 2010 May; 50(4):1690-701. PubMed ID: 20079856
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The global signal and observed anticorrelated resting state brain networks.
    Fox MD; Zhang D; Snyder AZ; Raichle ME
    J Neurophysiol; 2009 Jun; 101(6):3270-83. PubMed ID: 19339462
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heart Rate and Respiration Affect the Functional Connectivity of Default Mode Network in Resting-State Functional Magnetic Resonance Imaging.
    Yoshikawa A; Masaoka Y; Yoshida M; Koiwa N; Honma M; Watanabe K; Kubota S; Natsuko I; Ida M; Izumizaki M
    Front Neurosci; 2020; 14():631. PubMed ID: 32694974
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Global and system-specific resting-state fMRI fluctuations are uncorrelated: principal component analysis reveals anti-correlated networks.
    Carbonell F; Bellec P; Shmuel A
    Brain Connect; 2011; 1(6):496-510. PubMed ID: 22444074
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterizing the modulation of resting-state fMRI metrics by baseline physiology.
    Chu PPW; Golestani AM; Kwinta JB; Khatamian YB; Chen JJ
    Neuroimage; 2018 Jun; 173():72-87. PubMed ID: 29452265
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic-flip-angle ECG-gating with nuisance signal regression improves resting-state BOLD functional connectivity mapping by reducing cardiogenic noise.
    Hu C; Tokoglu F; Scheinost D; Qiu M; Shen X; Peters DC; Galiana G; Constable RT
    Magn Reson Med; 2019 Sep; 82(3):911-923. PubMed ID: 31016782
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conn: a functional connectivity toolbox for correlated and anticorrelated brain networks.
    Whitfield-Gabrieli S; Nieto-Castanon A
    Brain Connect; 2012; 2(3):125-41. PubMed ID: 22642651
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.