These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 27445783)

  • 1. Python Executable Script for Estimating Two Effective Parameters to Individualize Brain-Computer Interfaces: Individual Alpha Frequency and Neurophysiological Predictor.
    Alonso-Valerdi LM
    Front Neuroinform; 2016; 10():22. PubMed ID: 27445783
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Brain-computer interfaces for communication and control.
    Wolpaw JR; Birbaumer N; McFarland DJ; Pfurtscheller G; Vaughan TM
    Clin Neurophysiol; 2002 Jun; 113(6):767-91. PubMed ID: 12048038
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of distinct mental strategies on classification performance for brain-computer interfaces.
    Friedrich EV; Scherer R; Neuper C
    Int J Psychophysiol; 2012 Apr; 84(1):86-94. PubMed ID: 22289414
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessing motor imagery in brain-computer interface training: Psychological and neurophysiological correlates.
    Vasilyev A; Liburkina S; Yakovlev L; Perepelkina O; Kaplan A
    Neuropsychologia; 2017 Mar; 97():56-65. PubMed ID: 28167121
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Defining and quantifying users' mental imagery-based BCI skills: a first step.
    Lotte F; Jeunet C
    J Neural Eng; 2018 Aug; 15(4):046030. PubMed ID: 29769435
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neurophysiological predictor of SMR-based BCI performance.
    Blankertz B; Sannelli C; Halder S; Hammer EM; Kübler A; Müller KR; Curio G; Dickhaus T
    Neuroimage; 2010 Jul; 51(4):1303-9. PubMed ID: 20303409
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toward an Open-Ended BCI: A User-Centered Coadaptive Design.
    Dhindsa K; Carcone D; Becker S
    Neural Comput; 2017 Oct; 29(10):2742-2768. PubMed ID: 28777722
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Individually adapted imagery improves brain-computer interface performance in end-users with disability.
    Scherer R; Faller J; Friedrich EV; Opisso E; Costa U; Kübler A; Müller-Putz GR
    PLoS One; 2015; 10(5):e0123727. PubMed ID: 25992718
    [TBL] [Abstract][Full Text] [Related]  

  • 9. User-centered design in brain-computer interfaces-a case study.
    Schreuder M; Riccio A; Risetti M; Dähne S; Ramsay A; Williamson J; Mattia D; Tangermann M
    Artif Intell Med; 2013 Oct; 59(2):71-80. PubMed ID: 24076341
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of auditory distraction on user performance in a brain-computer interface driven by different mental tasks.
    Friedrich EV; Scherer R; Sonnleitner K; Neuper C
    Clin Neurophysiol; 2011 Oct; 122(10):2003-9. PubMed ID: 21511526
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Robust detection of event-related potentials in a user-voluntary short-term imagery task.
    Lee MH; Williamson J; Kee YJ; Fazli S; Lee SW
    PLoS One; 2019; 14(12):e0226236. PubMed ID: 31877161
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Brain oscillatory signatures of motor tasks.
    Ramos-Murguialday A; Birbaumer N
    J Neurophysiol; 2015 Jun; 113(10):3663-82. PubMed ID: 25810484
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Critiquing the Concept of BCI Illiteracy.
    Thompson MC
    Sci Eng Ethics; 2019 Aug; 25(4):1217-1233. PubMed ID: 30117107
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neurofeedback-based motor imagery training for brain-computer interface (BCI).
    Hwang HJ; Kwon K; Im CH
    J Neurosci Methods; 2009 Apr; 179(1):150-6. PubMed ID: 19428521
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Week-long visuomotor coordination and relaxation trainings do not increase sensorimotor rhythms (SMR) based brain-computer interface performance.
    Botrel L; Kübler A
    Behav Brain Res; 2019 Oct; 372():111993. PubMed ID: 31163204
    [TBL] [Abstract][Full Text] [Related]  

  • 16. User's Self-Prediction of Performance in Motor Imagery Brain-Computer Interface.
    Ahn M; Cho H; Ahn S; Jun SC
    Front Hum Neurosci; 2018; 12():59. PubMed ID: 29497370
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transferring brain-computer interfaces beyond the laboratory: successful application control for motor-disabled users.
    Leeb R; Perdikis S; Tonin L; Biasiucci A; Tavella M; Creatura M; Molina A; Al-Khodairy A; Carlson T; Millán JD
    Artif Intell Med; 2013 Oct; 59(2):121-32. PubMed ID: 24119870
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the control of brain-computer interfaces by users with cerebral palsy.
    Daly I; Billinger M; Laparra-Hernández J; Aloise F; García ML; Faller J; Scherer R; Müller-Putz G
    Clin Neurophysiol; 2013 Sep; 124(9):1787-97. PubMed ID: 23684128
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Machine-learning-based coadaptive calibration for brain-computer interfaces.
    Vidaurre C; Sannelli C; Müller KR; Blankertz B
    Neural Comput; 2011 Mar; 23(3):791-816. PubMed ID: 21162666
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pure visual imagery as a potential approach to achieve three classes of control for implementation of BCI in non-motor disorders.
    Sousa T; Amaral C; Andrade J; Pires G; Nunes UJ; Castelo-Branco M
    J Neural Eng; 2017 Aug; 14(4):046026. PubMed ID: 28466825
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.