These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 27446028)
1. Metabolic Capability of a Predominant Halanaerobium sp. in Hydraulically Fractured Gas Wells and Its Implication in Pipeline Corrosion. Liang R; Davidova IA; Marks CR; Stamps BW; Harriman BH; Stevenson BS; Duncan KE; Suflita JM Front Microbiol; 2016; 7():988. PubMed ID: 27446028 [TBL] [Abstract][Full Text] [Related]
2. Predominance and Metabolic Potential of Halanaerobium spp. in Produced Water from Hydraulically Fractured Marcellus Shale Wells. Lipus D; Vikram A; Ross D; Bain D; Gulliver D; Hammack R; Bibby K Appl Environ Microbiol; 2017 Apr; 83(8):. PubMed ID: 28159795 [TBL] [Abstract][Full Text] [Related]
5. Guar Gum Stimulates Biogenic Sulfide Production in Microbial Communities Derived from UK Fractured Shale Production Fluids. Cliffe L; Hernandez-Becerra N; Boothman C; Eden B; Lloyd JR; Nixon SL Microbiol Spectr; 2022 Dec; 10(6):e0364022. PubMed ID: 36453927 [TBL] [Abstract][Full Text] [Related]
6. The Microbial Community and Functional Potential in the Midland Basin Reveal a Community Dominated by Both Thiosulfate and Sulfate-Reducing Microorganisms. Tinker K; Lipus D; Gardiner J; Stuckman M; Gulliver D Microbiol Spectr; 2022 Aug; 10(4):e0004922. PubMed ID: 35695567 [TBL] [Abstract][Full Text] [Related]
7. Guar Gum Stimulates Biogenic Sulfide Production at Elevated Pressures: Implications for Shale Gas Extraction. Nixon SL; Walker L; Streets MDT; Eden B; Boothman C; Taylor KG; Lloyd JR Front Microbiol; 2017; 8():679. PubMed ID: 28469616 [TBL] [Abstract][Full Text] [Related]
8. Identification of Persistent Sulfidogenic Bacteria in Shale Gas Produced Waters. Cliffe L; Nixon SL; Daly RA; Eden B; Taylor KG; Boothman C; Wilkins MJ; Wrighton KC; Lloyd JR Front Microbiol; 2020; 11():286. PubMed ID: 32153553 [TBL] [Abstract][Full Text] [Related]
9. Temporal changes in microbial ecology and geochemistry in produced water from hydraulically fractured Marcellus shale gas wells. Cluff MA; Hartsock A; MacRae JD; Carter K; Mouser PJ Environ Sci Technol; 2014 Jun; 48(11):6508-17. PubMed ID: 24803059 [TBL] [Abstract][Full Text] [Related]
10. Microbial communities in freshwater used for hydraulic fracturing are unable to withstand the high temperatures and pressures characteristic of fractured shales. Nixon SL; Plominsky AM; Hernandez-Becerra N; Boothman C; Bartlett DH Access Microbiol; 2023; 5(4):. PubMed ID: 37223063 [TBL] [Abstract][Full Text] [Related]
11. Microbial colonization and persistence in deep fractured shales is guided by metabolic exchanges and viral predation. Amundson KK; Borton MA; Daly RA; Hoyt DW; Wong A; Eder E; Moore J; Wunch K; Wrighton KC; Wilkins MJ Microbiome; 2022 Jan; 10(1):5. PubMed ID: 35034639 [TBL] [Abstract][Full Text] [Related]
12. Geochemistry and Microbiology Predict Environmental Niches With Conditions Favoring Potential Microbial Activity in the Bakken Shale. Tinker K; Gardiner J; Lipus D; Sarkar P; Stuckman M; Gulliver D Front Microbiol; 2020; 11():1781. PubMed ID: 32849400 [TBL] [Abstract][Full Text] [Related]
13. Microbial Metabolism and Community Dynamics in Hydraulic Fracturing Fluids Recovered From Deep Hydrocarbon-Rich Shale. Morono Y; Wishart JR; Ito M; Ijiri A; Hoshino T; Torres M; Verba C; Terada T; Inagaki F; Colwell FS Front Microbiol; 2019; 10():376. PubMed ID: 30915042 [TBL] [Abstract][Full Text] [Related]
14. Coupled laboratory and field investigations resolve microbial interactions that underpin persistence in hydraulically fractured shales. Borton MA; Hoyt DW; Roux S; Daly RA; Welch SA; Nicora CD; Purvine S; Eder EK; Hanson AJ; Sheets JM; Morgan DM; Wolfe RA; Sharma S; Carr TR; Cole DR; Mouser PJ; Lipton MS; Wilkins MJ; Wrighton KC Proc Natl Acad Sci U S A; 2018 Jul; 115(28):E6585-E6594. PubMed ID: 29941576 [TBL] [Abstract][Full Text] [Related]
15. New microbiological insights from the Bowland shale highlight heterogeneity of the hydraulically fractured shale microbiome. Hernandez-Becerra N; Cliffe L; Xiu W; Boothman C; Lloyd JR; Nixon SL Environ Microbiome; 2023 Feb; 18(1):14. PubMed ID: 36855215 [TBL] [Abstract][Full Text] [Related]
17. Metabolites of an Oil Field Sulfide-Oxidizing, Nitrate-Reducing Lahme S; Enning D; Callbeck CM; Menendez Vega D; Curtis TP; Head IM; Hubert CRJ Appl Environ Microbiol; 2019 Feb; 85(3):. PubMed ID: 30446554 [TBL] [Abstract][Full Text] [Related]
18. Bacterial communities associated with production facilities of two newly drilled thermogenic natural gas wells in the Barnett Shale (Texas, USA). Davis JP; Struchtemeyer CG; Elshahed MS Microb Ecol; 2012 Nov; 64(4):942-54. PubMed ID: 22622766 [TBL] [Abstract][Full Text] [Related]
19. Use of carbon steel ball bearings to determine the effect of biocides and corrosion inhibitors on microbiologically influenced corrosion under flow conditions. Pinnock T; Voordouw J; Voordouw G Appl Microbiol Biotechnol; 2018 Jul; 102(13):5741-5751. PubMed ID: 29749561 [TBL] [Abstract][Full Text] [Related]
20. Control of Sulfide Production in High Salinity Bakken Shale Oil Reservoirs by Halophilic Bacteria Reducing Nitrate to Nitrite. An BA; Shen Y; Voordouw G Front Microbiol; 2017; 8():1164. PubMed ID: 28680423 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]